Standard Grade Physics # "HEALTH PHYSICS" Text and page layout copyright Martin Cunning! Majority of clipart copyright www.clipart.com Name: _____ Class: ____ Teacher: ____ # **Notes** #### **TEMPERATURE and THERMOMETERS** The **temperature** of an object is a measure of how **h**__ or **c**___ it is. Unit: **d**_____ **C**____ (°C). We measure temperature with a t_____. This requires some measurable p_____ q____ which changes with temperature. The word bank contains <u>measurable physical quantities</u> which change with <u>temperature</u>. By drawing lines, match these to the correct <u>thermometer</u>. • thermocouple • rotary (bimetallic strip) • liquid in glass - Electrical resistance of metal wire. - Volume of liquid. - Two metals expand by different amounts. - Colour of crystals. - Voltage difference between ends of 2 metals joined together. - Resistance of temperature sensitive resistor (thermistor). - digital (thermistor) thermometer • liquid crystal • resistance thermometer • Label the parts of the <u>liquid</u> in glass thermometer. • Describe how it works. A <u>clinical liquid in glass</u> thermometer is used to measure the temperature of the human body. • Label the <u>clinical liquid</u> in glass thermometer. • Explain what is special about the <u>tube</u> inside this thermometer? • Write down any other differences between a <u>clinical</u> <u>liquid in glass</u> thermometer and an <u>ordinary liquid in glass</u> thermometer: #### **Human Body Temperature** Doctors use **body temperature** to tell if a patient is **ill**. • By drawing lines, match the terms in the **word bank** to the temperatures shown on the <u>clinical liquid</u> in <u>glass</u> thermometer. 43 °C 37°C 32°C 28 °C • death • death - severe fever / poor blood flow round body/ unconsciousness - hypothermia - normal healthy body temperature - shivering / reduced heart rate # Measuring Human Body <u>Temperature</u> Describe how to measure <u>human body temperature</u> with a <u>clinical liquid in glass</u> thermometer: | | |
 | |--|--|------| • Describe any differences in your measuring technique if you used a <u>digital clinical</u> thermometer: # **Sound Travelling Through Materials** Can **sound** travel through: - solids like brick? - □yes □no - liquids like water? - □yes □no - gases like air? - □yes □no Sound cannot travel through a $v_{____}$ where there are no $s_{___}$, $I_{____}$ or $g_{__}$ particles. When the jar has **air** in it, we can hear the bell **r** . Describe and explain what happens when air is pumped out of the jar: # The Stethoscope • Label the diagram of a stethoscope: word bank bells, ear pieces, rubber tubes | principles of the stethoscope as a hearing aid: | | |---|--| | | | | | | | | | | | | | | | | | | # **Noise Pollution** | 11010 | <u> </u> | |----------------|--| | Noise is any s | which is unpleasant to $\mathbf{h}_{}$. | | | o people who are exposed to
oise for a long time: | | | | | | | | Some examples | s of noise pollution are: | | | | | | | ## **Sound Levels** Some **sounds** are **louder** than others. We measure the **loudness** of **sound** in units called **d**_____ (___). • Match the **sound levels** given in the box below to the appropriate situations: 0 dB 20 dB 50 dB 70 dB 100 dB 110 dB 115 dB 30 dB 120 dB 130 dB 140 dB low flying aircraft • motor cycle at 1 metre • pain threshold • pop group at 1 metre • minimum sound level that can be heard loud television • danger level to hearing • thunder whisper # **Frequency of Sound** | Sound | is made | | by | objects | which | | |-------|---------|---|----|---------|-------|--| | | | V | | | | | The number of **vibrations every second** is called the | f | |
 | | | |-------|---|------|-----|--| | Unit: | h | | _ (| | The lowest frequency of sound that humans can hear is Hz. The highest frequency of sound that humans can hear is | | | ar . | | | |--------------|---------------|--------|-----|-------| | | | | | | | High frequen | cy vibrations | beyond | the | range | | of human he | aring (above | | | Hz) | | are c | alled ii | | | • | | U is used | |------------------------------| | as a medical technique to | | obtain images of a b | | in its mother's \mathbf{w} | | | | • Exp | olain this | medica | l tec | hnique: | |-------|------------|--------|-------|---------| | | | | | | # **Refraction of Light** **Light** travels in **straight lines** called **light r**___. When **light** passes from one material into another of different **density**, its **s**____ changes and so its **d**_____ changes (unless the light hits the material at 90° to its surface) - This is known as **r**_____. A normal is a dashed line drawn at 90° to the surface of a material where a light ray hits the material. • Using a <u>ruler</u> and <u>protractor</u>, complete each diagram below to show what happens to the <u>rays of light</u> as they pass through the glass blocks. (Remember to draw <u>normal lines</u>). TAKE YOUR TIME AND WORK VERY CAREFULLY. # Clipart copyright S.S.E.R. Ltd #### **Lenses** - Name each shape of **lens** shown below. - Using a <u>ruler</u>, complete both diagrams to show what happens to the <u>light rays</u>. - On each diagram, show the <u>focal length</u> of the lens. - Describe a simple experiment you could perform to find the <u>focal length</u> of a <u>convex lens</u>. # **Focal Length and Power of Lenses** T____ lenses refract (**b**___) light more than **t**___ lenses - so **t**____ lenses are more **p**_____. A **powerful** lens has a **s**_____ focal length. Convex lenses have a **p**_____ (__) power. Concave lenses have a **n**_____ (__) power. focal length in metres (f) = power (P) dioptres (D) metres (m) | Convex Lenses | | <u>C</u> | Concave Lenses | | | |--|--|---|---|----|--| | A convex lens has a power of +5 D. Calculate its focal length in metres. | A convex lens has a focal length of 0.5 m. Calculate its power. | A concave lens has a power of -4 D. Calculate its focal length in metres. | A concave lens has a focal length of 1.25 m. Calculate its power. | | | | Calculate the focal length of a lens with power + 40 D. | Calculate the power of a convex lens of focal length 0.25 m. | Calculate the focal length of a lens with power -8 D. | Calculate the power of a concave lens of focal length 0.6 m. | 42 | | The image is $u_{---}d_{--}$ and $I_{---}i_{---}(b_{--}to\ f_{---}).$ # To help you understand how the <u>inverted image</u> is formed, complete the diagram below. USE A PENCIL AND RULER!!! TAKE YOUR TIME!!! BE CAREFUL!!! # **Looking at Distant Objects** When we look at an object some distance from the eye, the light rays from the object which enter our eye are **p**_____ to one another. The muscles around our eye lens are \mathbf{r}_{---} , so the eye lens is \mathbf{t}_{---} . #### Complete the diagram: #### **Looking at Close Objects** When we look at an object close to the eye, the light rays from the object which enter our eye are n p to one **n** __ **p** ____ to one another. The muscles around our eye lens squash it, making the lens t ____ so it can focus the light rays on the retina. #### Complete the diagram: | A person who is I | s | can see c | | |--------------------------|----------------|---------------------------------|-----| | | | $_$ - This is because the eye |) | | c focus the p |) | light rays coming from the | е | | (| bject on the | r . | | | | , | | | | 11 | | | | | | | e c objects whi | | | | | because the eye $\mathbf{c}_{}$ | | | | | _ light rays coming from th | е | | O | bject on the | r | | | Complete this diagram | to show how | | | | "long-sighted eye" for | | | | | from a <u>close</u> d | | | | | | 1 | | | | | | | | | | | | | | | | | Λ | | | | | 1 | | | | | | | | | | | | To correct long | | | | | c I is p | | | | | ne eye. Complete this d | iagram to show | the | | | affect the lens has on l | | l a | | | <u>close</u> objec | et. | | | | | | | | | | | | | | | // | | | | | \ (| | 7) | | | | | 1)) | | | | | 7 | | | | | | | | | | | Complete this diagram to show how a "short-sighted eye" focuses light rays from a distant object. To correct short sight, a **c**_____ **I**___ is placed in front of the eye. Complete this diagram to show the affect the lens has on light rays from a distant object. A person who is **s**____ can see **c**_____ objects which are **c**____- This is because the eye \boldsymbol{c} __ focus the \boldsymbol{n} __- - \boldsymbol{p} ____ light rays coming from the object on the **r**_____. However, the person cannot see **c**____ objects which are \mathbf{d} _ _ _ _ (\mathbf{f} _ _ \mathbf{a} _ _ _) - This is because the eye object on the r____. Clipart copyright S.S.E.R. Ltd # Fibre Optics and the Fibrescope (Endoscope) | Fibre optics can be used as a transmission system for c light - No h energy passes through the system. | |---| | L passes along an o f by t i r | | What do the words " <u>total</u> " and " <u>internal</u> " tell you about the reflection? | | | | • Complete this diagram to show light passing along an optic fibre: | | | # **Notes** #### Lasers A laser produces an intense beam of light in one direction. Lasers have various uses in medicine. For example: ## Vaporising Cancer Tumours # **Laser Scalpel** ## **Eye Surgery** # Removing Tattoos/Birth Marks ## Infra-Red (I.R.) | Infra-red rays are i h rays given out by all w objects. | | |---|------------------------| | Cancer tumours are w than healthy tissue, so can be detected by the i rays they give off. | 0 525 | | Physiotherapists also use infra-red rays to heat up injured m This speeds up the healing process. | infra-red
heat lamp | | Ultra-Violet (U.V.) | | # Ultraviolet rays can be used to kill microbes. Hospitals use UV lamps to s_____ surgical equipment and the air in operating theatres. Food and drug companies also use UV lamps to **s**_____ their products. | Large doses of ultraviolet | |------------------------------| | cause s and | | even s c | | Fortunately, the ozone | | layer in the Earth's | | atmosphere screens us | | from most of the | | ultraviolet given off by the | | Sun. Think of a sun tan as | | a radiation burn! | # X - Rays X-rays are very high frequency w _ _ _ _ , and carry a lot of e _ _ _ _ . They pass through most substances, and this makes them useful in medicine and industry to see inside things. X-rays are used by doctors to see inside people. They pass easily through s _ _ _ t _ _ _ , but not so easily through b _ _ _ _ . We use **p**_____ **f**___ to detect X-rays. We send a beam of X-Rays through the patient and onto a piece of **p**_____ **f**___, which goes **d**___ where X-Rays hit it. This leaves **w**____ patches on the film where the **b**___ were in the way. An X-ray machine An X-ray photograph Low energy X-Rays don't pass through tissues as easily as normal X-Rays. They can be used to scan soft areas such as the b | X-Rays can al | so be used in high | |------------------|--------------------| | doses to kill c_ | t | # X-Rays and Computerised Tomography Using a special X-Ray machine which r____ around the body, X-Rays images of the body are taken in t___ s___. A computer combines all these images to provide a t____ d___ picture of the body. A 3-D image provides far more detail than a normal 2-D X-Ray image. # **NUCLEAR RADIATION** # **The Atom** | Each atom of | s made up of contains p _ ghtly packed | together in | and n
a tiny cer | | |------------------|--|-----------------------------------|-----------------------------|-----------------------------| | Circling arous | tne n
nd the | | | | | | | | p
p
n | _ containing
and
— | | | <u>Ionisat</u> | tion of A | <u>Atoms</u> | | | Radioactivity of | can knock e is known as i | | out of ato | oms. This | | human body
n | ty can i
- This can k _
The cells migh
Id or might chai | the cell
it grow in a d | s or chang
lifferent way | e their
/ to what | | | radioactivity k | • | - | I to | | i the a When the film is dev People who wear a ba | whits photographic film, it atoms on the film surface. Weloped, it looks f o work with radioactivity often adge containing photographic in a f b | |--|---| | When they finish work, they their f b photographic film inside is do We can tell how much radio they have received at work they how f | The eveloped. Pactivity rk by A film bades | | We can detect radioactivity with a G M tube. nside the tube there is a gas. When radioactivity enters the tube through a thin window in the front or through its walls, atoms in the gas are i The e thocked out of the a form an c c This produces a reading on a m This shows us | | that **radioactivity** is present. Geiger - Muller tube meter - The **b** # **Types of Radioactivity** There are 3 types of radioactivity: - a _ _ _ p _ _ _ _ (symbol ___) - **b** _ _ _ p _ _ _ _ _ (symbol _ __) - \bullet g _ _ _ r _ _ _ (symbol _ __) These can travel different distances through the air: They are **a** _____ by different **types** and **thicknesses** of material: | A | \ p | are the mos | st dangerous type of | |----|--------------------------|------------------|----------------------| | | radioactivity for humans | s because th | ey cause the most | | i_ | and so th | ne most d | to body cells. | | | | | | # Radioactivity Safety Precautions When dealing with **radioactive** substances, it is necessary to adopt **safety procedures**. For example: | <u>radioactivity hazard</u>
<u>symbol</u> | |--| | | | | # Affect of Radioactivity on the Body For living materials, the biological effect of radioactivity depends on the type of absorbing t _____ and the type of r _____. A quantity called the d _ _ e _ _ _ takes account of the t _ _ and e _ _ _ of the r _ _ _ . D _ _ e _ _ _ is measured in s _ (). # **Activity of a Radioactive Source** | The a of a radioactive source is the number of a p, b p and g r it gives out every s | |--| | A is measured in b (). | | The a of a radioactive source d with time. | | Background Radiation | | The air around us is slightly <u>radioactive</u> - We are exposed to this b r r 24 hours a day. | | Sources of b r r include: | | • C r from outer space. | | • Rocks such as g | | Hospital waste from c treatment. | | Nuclear w tests and leaks from | | nuclear ps. | #### Half-Life of a Radioactive Source | The h I of a radioactive | e source is the | |---|------------------| | t it takes for the a | of the source to | | h | | | Different substances have d h - l For example: | | Label this apparatus and describe how you would use it to measure the half-life of the radioactive sample. Include how you would allow for background radiation. Assume you have obtained the results provided on the next page and that you will use these results to plot a half-life graph: | Time / minutes | Activity (corrected for background radiation) / Bq | |----------------|--| | 0 | 480 | | 10 | 240 | | 20 | 120 | | 30 | 60 | | 40 | 30 | |
 | |------------------| | | |
 | | | | | | | | | | | | | |
 | | | |
 | | | | | | | | | |
 | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | The half-life of a radioactive substance is 15 minutes. How long will it take for the activity of the substance to fall from 160 Bq to 20 Bq? | How long will it take for the activity of a radioactive source to fall from 3 200 Bq to 100 Bq if the source has a half-life of 25 days? | |---|--| | Determine the half-life of a radioactive source if its activity falls from 200 Bq to 25 Bq in 120 minutes. | The activity of a radioactive sample decreases from 640 Bq to 20 Bq in 100 seconds. Calculate the half-life of the sample. | | 26 | | # **Notes** # **Notes**