Telecommunications - Homework 1

1. $\left(2 \times 10^{3}\right) \div 10^{4}$ is equal to

A 2
B 0.2
C 0.8
D 2×10^{7}
2. What is value of $10^{5} \div\left(2 \times 10^{-3}\right)$?

A 5×10^{7}
B 5×10^{8}
C 50
D 500
3. 3.5 minutes is, in seconds,

A 180.
B 210.
C 230.
D 350 .
4. If speed $=$ distance \div time,

A distance $=$ speed \div time .
B distance $=$ speed x time.
C time $=$ speed x distance.
D distance $=$ time \div speed.
5. The distance run at an average speed of $4 \mathrm{~m} / \mathrm{s}$ in 40 seconds is

A 0.1 m
B 10 m
C 44 m
D 160 m
6. The sound wave emitted by a tuning fork has a wavelength of 50 cm in air where the speed of sound is $340 \mathrm{~m} / \mathrm{s}$. What is its frequency in hertz?

A 68
B 680
C 170
D 17,000
7. Sound waves travel at $340 \mathrm{~m} / \mathrm{s}$ through air. What is the wavelength of a sound of frequency 1360 hertz?

A 0.25 m
B 4 m
C 1020 m
D 1360 m
8. How are the pitch and loudness of a sound related to properties of the sound wave?
pitch
A amplitude
B frequency
C frequency
D speed
loudness
frequency amplitude speed amplitude
9. The sketch shows the display on the screen of a CRO for a musical note.

Which of these displays is for a louder note with a lower pitch?
(Assume that the controls of the CRO have not been altered).

A

B

C

D

10. What energy change happens when a microphone is used?
11. The musical note 'middle C' on a piano has a frequency of 256 Hz .
(a) How many times would a piano string making the note 'middle C' vibrate back and forth if the note lasted for 5 seconds?
(b) What would be the wavelength of the sound in the air where the speed of sound is $340 \mathrm{~m} / \mathrm{s}$?
12. A water wave is travelling across the surface of the sea at a speed of $2.5 \mathrm{~m} / \mathrm{s}$. How long would it take to travel a distance of 2 km ?
13. Measure the wavelength and amplitude of this 'side-on' view of a transverse wave. Express your answers in centimetres.

14. The period of a vibrating bar making waves in a ripple tank is 0.2 s .
(a) Calculate the frequency of the waves made by the vibrating bar.

One wave front takes 3.0 s to travel the 30 cm length of the tank.
(b) Calculate the speed of the wave and hence its wavelength.
15. (a) Two timekeepers, Smith and Jones, are timing a 100 m sprint.

Smith starts her stopwatch when she sees the smoke from the starter's gun. Jones starts his watch when he hears the bang from the gun. Both stop their watches at the instant that the winner reaches the finishing line. Both timekeepers are 100 m from the starter.
(a) Which timekeeper records the shorter time for the winner? Explain your answer.
(b) The reading on Jones' watch is 11.3 s . What is the reading on Smith's watch?

Telecommunications Homework 2

1. Which part of a radio receiver selects a certain radio wavelength?

A tuner
B amplifier
C aerial
D decoder
2. Which part of a radio receiver supplies the energy needed to produce the sounds which you hear?

A amplifier
B loudspeaker
C battery
D aerial
3. What do the letters 'AM' mean in radio transmission?

A before noon
B amplitude modification
C amplifier module
D amplitude modulation
4. Which correctly describes how the picture on a modern television screen is built up?

A 25 pictures per second, each of 405 lines.
B 25 pictures per second, each of 625 lines.
C 405 pictures per second, each of 25 lines.
D 625 pictures per second, each of 25 lines.
5. On a colour T.V. screen, which colours of dots would be lit up in a yellow part of the picture?

A red and blue
B red and green
C blue and green
D red, blue and green
6. The frequency, in hertz, of a radio wave of wavelength 265 m in air is calculated from

A $265 \div 340$.
B $265 \div\left(3 \times 10^{8}\right)$.
C $340 \div 265$.
D $\left(3 \times 10^{8}\right) \div 265$.
7. A radio station broadcasts on a frequency of 200 kHz . If the speed of radio waves is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, their wavelength is

A 1.5 m .
B 1500 m .
C 15000 m .
D $1.5 \times 10^{6} \mathrm{~m}$.
8. Which diagram shows how a ray of light is reflected from a plane mirror?
A

C

D

9. Which statement is the law of reflection for light reflecting from a surface?

A incident angle $=$ reflected angle
B incident angle $=$ reflected angle $\times 2$
C incident angle $=$ reflected angle $\div 2$
D incident angle + reflected angle $=90^{\circ}$
10. Which of these statements about radio waves is true?

A The longer their wavelength, the faster their speed.
B The higher their frequency, the faster their speed.
C Waves with different frequencies all travel at the same speed.
D The bigger their amplitude, the faster their speed.
11. (a) Calculate the frequency, in hertz, of a radio station which broadcasts on the Medium Wave with a wavelength of 1500 m .
(b) Express the frequency in kilohertz ($\mathbf{k H z) .}$
12. A radio station broadcasts on $250 \mathrm{~m}, 1200 \mathrm{kHz}$. Use these figures to show that the radio wave travels through the air at $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
13. Extra Low Frequency (ELF) waves are used to communicate with submarines. Calculate the wavelength in air of an ELF wave of frequency 1.5 kHz . Answer in kilometres.
14. (a) Copy and complete the diagram to show what happens to water waves passing a barrier.

(b) What name is used for the wave property in your diagram?
15. State two advantages of using fibre optics for communications instead of copper wires.
16. While on holiday in the Highlands with her family, Kirsty notices that a radio and television transmitter is situated on the other side of the hill from the cottage where she is staying.

(a) On checking the local paper, Kirsty finds that the radio programme she wishes to listen to is transmitted at a frequency of 1089 kHz and that the television programme she wishes to see is transmitted at a frequency of 623 MHz .
Which of these two transmissions has the longer wavelength?
(b) Kirsty notices that, although she can good reception on her radio, the television reception is very poor.
Use your answer to part (a) to explain this difference in reception.
(c) Kirsty tries playing a video cassette and finds that she gets a perfect picture on the television screen.
Explain why this can happen when the television reception is so poor.

Health Physics - Homework 1

1. $\left(3 \times 10^{8}\right) \div 2 \times 10^{4}$ is equal to

A 1.5
B 6×10^{12}
C 15000
D 150
2. What is value of $1600 \div 2 \times 10^{6}$?

A 0.0008
B 4800
C 806
D 0.000025
3. The normal human body temperature is approximately

A $20^{\circ} \mathrm{C}$
B $37^{\circ} \mathrm{C}$
C $42^{\circ} \mathrm{C}$
D $98^{\circ} \mathrm{C}$
4. The speed of sound through the air is approximately

A 186,000 miles per second.
B 300 million metres per second.
C 340 metres per second.
D the same as the speed of the wind.
5. Sound can not travel through

A gases.
B liquids.
C a vacuum.
D solids.
6. Which is most likely to be the range of sound frequencies which a young person can hear?

A 2-200 hertz
B 20-200 hertz
C 20-2000 hertz
D 20-20000 hertz
7. Which sound level is the 'threshold of hearing'?

A 0 dB
B 1 dB
C 100 dB
D 140 dB
8. If $\mathbf{v}=f \lambda$, then

A $\lambda=\mathbf{v f}$
B $\lambda=\mathbf{V} / \mathbf{f}$
C $\lambda=\mathbf{f} / \mathbf{v}$
D $\lambda=\mathbf{v - f}$
9. If speed $=$ distance \div time,

A distance $=$ speed \div time.
B distance $=$ speed x time.
C time $=$ speed x distance.
D distance $=$ time \div speed.
10. The speed of ultrasound though body tissue is $1500 \mathrm{~m} / \mathrm{s}$. How long would a pulse of ultrasound take to travel a distance of 30 cm through the body?

A 0.0002 s
B 0.02 s
C 50 s
D 5000 s
11. How far would sound travel though air in 10 seconds at a speed of $340 \mathrm{~m} / \mathrm{s}$?

A 34 m
B 340 m
C 3400 m
D 34000 m
12. $(2 \div 1 / 2)$ is the same as

A 0.5
B 1
C 1.5
D 4
13. $\frac{40}{0.5}$ is the same as

A 0.0125
B 8
C 35
D 80
14. The speed of sound through the air is $340 \mathrm{~m} / \mathrm{s}$. How long would the sound from a singer take to reach from the stage to the back of a concert hall which is 55 m long?
15. Why is the temperature range on a clinical thermometer is much smaller than on a laboratory thermometer?
16. Give one example of 'noise pollution'.
17. Ultrasound pulses travel through the body at $1500 \mathrm{~m} / \mathrm{s}$. How long would a pulse take to travel to and from a probe on a pregnant woman's abdomen to her baby's head if it is 3 cm below the surface of the abdomen.
18. A loudspeaker makes a sound with a frequency of 3 kHz .

Explain what this means in terms of the vibrations of the loudspeaker's cone.
19. Images which have been produced by ultrasound are sometimes used by doctors.

(a) The ultrasound is transmitted through the patient's skin from a probe as shown.
(i) What is meant by the term ultrasound?
(ii) The ultrasonic waves have a frequency of 8.0 MHz . Calculate the wavelength of the ultrasound in muscle.

$$
\begin{equation*}
\text { [speed of sound in muscle }=1600 \mathrm{~m} / \mathrm{s} \text {] } \tag{2}
\end{equation*}
$$

(b) Give one example of the use of ultrasound in medicine.
(c) Why is ultrasound safer than X-rays for some medical investigations?

Health Physics - Homework 2

1. Which entry describes the rays in diagrams \mathbf{P}, \mathbf{Q} and \mathbf{R} below?

A converging diverging parallel
B parallel
C parallel
D diverging
diverging converging converging diverging parallel converging
2. Which term is used when light slows down on entering a transparent material such as glass from the air?

A reflection
B refraction
C diffraction
D interference
3. What is the power of a converging lens with a focal length of 2.5 cm ?

A +0.25 D
B +0.4 D
C +2.5 D
D +40 D
4. Which types of lenses are hidden at \mathbf{X} and \mathbf{Y} ?

X

$$
\boldsymbol{Y}
$$

A weak diverging strong diverging
B weak converging strong converging
C diverging converging
D converging
diverging
5. The power of a converging lens is +20 D . What is the focal length of the lens, in centimetres?

A 0.05
B 0.2
C 5
D 20
6. Which happens to light's speed when it moves form glass in to the air?

A Stays the same
B Increases
C Decreases
D Increases or decreases depending on the type of glass
7. Which diagram correctly shows a ray of light travelling from air into a block of glass ?

8. A ray of light is incident on a glass block.

Which entry correctly states the angles of incidence and refraction of the ray ?

	incidence	refraction
A	60°	35°
B	30°	55°
C	60°	55°
D	30°	350

9. Which type of wave is not a member of the electromagnetic spectrum ?

A Gamma rays
B Ultra-violet
C Sound
D Infrared
10. The diagram shows a ray of light incident on a transparent block of material.

Copy and complete the diagram to show the position of the reflected ray at surface \mathbf{A} and the refracted ray at surface \mathbf{B}.
11. In each diagram, a ray of light is shown travelling through glass and meeting the boundary with air. The critical angle at the boundary is 42°. Copy and complete each diagram to show what happens to the ray of light.

12. What name is used for the behaviour of light travelling through glass and meeting its boundary with air at an angle greater than the critical angle?
13. The diagrams show three parallel rays of light incident on two converging lenses with different optical powers. Copy and complete the diagrams to show how each lens brings the rays of light to a focus.

14. Calculate the focal lengths, in centimetres, of these converging lenses:
(a) +20 D
(b) +2.5 D
(c) +10 D
(d) +14 D
(e) +2 D

Using Electricity - Homework 1

1. The relationship between charge (\mathbf{Q}), current (I) and time (\mathbf{t}) is given by

A $\mathbf{Q}=\mathrm{It}$
B $\mathrm{I}=\mathrm{Qt}$
C $Q=I / t$
D $\mathbf{t}=\mathrm{I} Q$
2. 200 C of charge pass through the element of an electric fire in 5 s . What is the current in the element?

A 0.25 A
B 40 A
C 200 A
D 1000 A
3. How long would it take 100 C of charge to pass through a point in a circuit which has a steady current of 5 A ?

A 0.05 s
B 5 s
C 20 s
D 500 s
4. Which circuit correctly shows how meters must be connected to measure the current through and voltage across the resistor?

5. What is the purpose of the fuse fitted to a plug?

A It protects the appliance's cable if too much current flows in it.
B It keeps the current steady.
C It 'blows' if the mains voltage changes.
D It makes the whole mains circuit cut out when too much current goes through it.
6. What is the purpose of the earth wire which is attached to certain mains appliances?

A Causes plug fuse to 'blow' if appliance casing becomes live.
B Takes electric current back to power station.
C Prevents wiring overheating.
D Causes fuse to 'blow' if too much current passes through appliance.
7. Which is the correct wiring code for appliance cables with 3 wires for connection to a 3-pin plug?

	live	neutral	earth
A	blue	brown	green/yellow
B	brown	blue	green/yellow
C	green/yellow	blue	brown
D	green/yellow	brown	blue

8. Certain mains appliances have this symbol marked on their casings:

Which statement(s) is/are correct for appliances with this symbol ?

I They are double-insulated.
II Their cases are made of metal.
III Their power ratings are always less than 500 W .

A I only
B II only
C III only
D I and II only
9. Which statement(s) is/are correct about the cartridge fuse fitted to a 13 A plug?

I It is connected to the live terminal.
II Its value is just less than the current drawn by the plug's appliance.
III It is made of thin wire.
A I only
B II only
C I and II only
D I and III only
10. The plug for a $\mathbf{6 0 0}$ watt hair drier is shown. Mistakes have been made.

Which are mistakes ?
I The earth wire is connected to the live terminal.
II The cable is not gripped.
III The fuse value is too high.
A I only
B II only
C I and II only
D I, II and III
11. Copy and complete the circuit diagram to show how an ammeter should be connected to measure the current between resistors A and B.

12. Copy and complete the circuit diagram to show how a voltmeter should be connected to measure the voltage across resistor A .

13. What happens to a fuse when too much current flows through it? (Avoid stating that the fuse 'blows').
14. An appliance with a plastic case is double insulated. State which wire is 'missing' from its flex and explain why is in not required?
15. In some houses, the mains electricity is earthed by strapping a thick wire to the cold water pipe. Lately, these pipes are often made of plastic.
Why would this be unsuitable for connecting the earth wire?
16. If the metal casing of a mains appliance becomes live due to a fault, why would it be dangerous if the appliance was not earthed?
17. What should the earth wire cause to happen if a metal appliance's casing becomes 'live' due to a fault?
18. A car headlamp bulb draws 2 A from the battery. How much charge flows through the bulb in 5 minutes?
19. What current flows through a point in a circuit if 40 coulombs of charge passes the point in 8 seconds?
20. How long would it take 30 coulombs of charge to pass through the lamp in this circuit if the reading on the ammeter is 2 amps?

Using Electricity - Homework 2

1. In the circuit below, the current at point \mathbf{X} is 2 A . What are the currents at points \mathbf{P}, \mathbf{Q} and \mathbf{R} ?

$P \quad Q \quad R$

A	2 A	4 A	2 A
B	2 A	2 A	2 A
C	4 A	4 A	2 A
D	2 A	1 A	2 A

2. In the circuit shown, what are the current values at the points \mathbf{P} and \mathbf{Q} ?

	\boldsymbol{P}	\boldsymbol{Q}
A	1 A	3 A
B	2 A	$3 A$
C	1 A	-3 A
D	3 A	1 A

3. Two components of a circuit are connected in series. One component's resistance is double that of the other. The current through one of the components is 4 amps. What could the current through the other component be?

A 2 amps or 8 amps
B 2 amps
C 8 amps
D 4 amps
4. Which statement(s) about an ammeter is/are correct?

I It measures the voltage across a part of a circuit.
II It is connected in series with a circuit component.
III It should have a very low resistance.
A I only
B III only
C I and II only
D II and III only
5. Which resistor has the smallest resistance?

6. Which circuit components are represented by these symbols?

A	lamp	resistor	rheostat
B	fuse	resistor	thermistor
C	lamp	fuse	resistor
D	ammeter	fuse	resistor

7. What are the voltages across resistors \mathbf{R} and \mathbf{S} ?

R
 S

A	2 V	3 V
B	2 V	0 V
C	4 V	3 V
D	6 V	6 V

8. What is the relationship between the voltage (V) across a conductor, the current (I) through it and and its resistance (R)?

A $R=V / I$
B $\quad \mathbf{V}=\mathrm{R} / \mathrm{I}$
C $\quad I=R / v$
D $\mathbf{I}=\mathbf{V R}$
9. The voltage across a resistor is 20 V and the current through it is 2A. What is the resistance of the resistor?

A 0.1Ω
B 5Ω
C 10Ω
D 40Ω
10. What is the value of a resistance of 2200Ω expressed in kilohms (k Ω)?

A 0.22
B 2.2
C 2200
D 2,200,000
11. In the circuit below, the resistance of the variable resistor is gradually increased.

What happens to the readings on the ammeter and voltmeter?

ammeter voltmeter

A decreases decreases
B decreases increases
C increases
D increases decreases increases
12. The filament of lamp \mathbf{X} passes 20 C of charge in 10 seconds. Lamp \mathbf{Y} passes double the charge in half the time. What are the currents in the lamps?

$$
\text { Lamp } X \quad \text { Lamp } Y
$$

A	2 A	8 A
B	2 A	4 A
C	2 A	2 A
D	2 A	1 A

13. What is true of the size of the resistances of 'good' ammeters and voltmeters?

ammeters

A very small
B very large
C very small
D very large
voltmeters
very small
very large
very large
very small
14. A steady current of 2 A flows round a series circuit. How much charge passes any point in the circuit in 10s?

A 2 C
B 5 C
C 10 C
D 20 C
(Using Electricity Homework 2 continued on next page).
15. A boy has set up this circuit to measure the voltage of the battery. There is a reading on the voltmeter but he notices that the lamps have not lit up. What has he done wrong?

16. In each circuit, state the current at positions \mathbf{P} and \mathbf{Q}.
(a)
(b)

17. The circuit below is for a simple fan heater.

(a) Which switch or switches would be closed if the motor was to be on but not the heat?
(b) Which switch or switches would be closed if the motor was to be on to blow hot air from the heater?
(c) Explain whether it is possible to have the heater on without the motor being on?
18. Draw a circuit diagram for the following circuit, using the usual circuit symbols: a 9V battery connected to a switch, on its positive side, which controls two lamps wired in parallel. One of the two lamps has its own switch so that it can be switched on and off without the other lamp being affected.
19. Draw a circuit diagram for the following circuit, using the usual circuit symbols: a 20V power supply in series with a single resistor followed by two resistors connected in parallel. An ammeter measures the current drawn from the supply and a voltmeter measures the voltage across the parallel resistors.

Using Electricity - Homework 3

1. The formula for calculating the total resistance, $\mathbf{R}_{\mathbf{t}}$, of two resistors $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ connected in series is

A $\quad \mathbf{R}_{\mathbf{t}}=\mathbf{R}_{\mathbf{1}} \boldsymbol{+} \mathbf{R}_{\mathbf{2}}$
B $\quad \mathbf{R}_{\mathbf{t}}=\left(\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}\right) \div \mathbf{2}$
C $\mathbf{R}_{\mathbf{t}}=\left(\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}\right) \div \mathbf{2}$
D $\frac{1}{R_{t}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
2. Two resistors, of values 3Ω and 6Ω are connected in series. What is the total resistance of the resistors?

A 2Ω
B 3Ω
C 9Ω
D 18Ω
3. What are the readings on the ammeter with the switch open and closed?

	open	closed
A	4 A	6 A
B	6 A	4 A
C	4 A	4 A
D	6 A	6 A

4. Resistor \mathbf{X} is connected in parallel to a 100Ω resistor.

Which cannot be the total resistance of the two resistors?

A 20Ω
B 50Ω
C 90Ω
D 120Ω
5. What is the total resistance of this combination of resistors?

A 2Ω
B 3Ω
C 4Ω
D 10Ω
6. A section of thick conducting wire is connected across the ends of a 20Ω resistor.

The resistance between \mathbf{X} and \mathbf{Y} is
A 0Ω.
B 1Ω.
C 20Ω.
D very large
7. Ohmmeters are connected across an open switch and a closed switch.

What are the readings on the ohmmeters likely to suggest about the value of the resistance in each situation?

	open	closed
A	zero	zero
B	zero	very large
C	very large	zero
D	very large	very large

8. The power rating of a 12 V lamp is 24 W . What current flows through the lamp when it is operating properly?

A 2 A
B 6 A
C 12 A
D 24 A
9. A lamp whose filament resistance is 3Ω at its normal operating temperature carries a current of 4 A . How is the power rating of the lamp, in watts, calculated?

A 4×3
B $4 \times 4 \times 3$
C $3 \times 3 \times 4$
D $(4 \times 4) \div 3$
10. A lamp, operating from a 10 volt power supply, uses up 1800 joules in one minute. What current flows through the lamp?

A 0.3 A
B 3 A
C 18 A
D 180 A
11. A 12 V water heater carries a current of 3A in normal operation. The heater's resistance and power are

A 36Ω and $4 W$.
B 4Ω and 36 W .
C 4Ω and 96 W .
D 0.25Ω and 36 W .
12. Which part of a d.c. electric motor reverses the direction of the current at every half turn?

A armature
B field coils
C commutator
D brushes
13. A long current-carrying conductor is at 90° to a uniform magnetic field. It experiences a force at 90° to both itself and the field.

Which change(s) will increase the size of the force?

I Increase the strength of the field.
II Increase the size of the current.
III Loop the conductor so that it passes through the field twice.

A I only
B II only
C I and II only
D I, II and III
(Using Electricity Homework 3 continued on next page).
14. In each case, calculate the combined resistance between \mathbf{A} and \mathbf{B}.
(a)

15. In part of an electric circuit, the voltage across a 12Ω resistor is 18 V . Calculate the current through the resistor?
16. An immersion heater is marked 230 volt; 1 kilowatt.

Calculate the current in the heater element.
17. In this circuit, calculate the power dissipated in the resistor:
[Remember to change the current into 'amps' and the resistance into 'ohms' before calculating the power].

18. In a real motor, state what are the 'brushes' usually made of and suggest one reason why this material is used.
19. Draw circuit diagrams showing how a variable resistor could be used to vary the brightness of a lamp in two different ways.

Use these circuit symbols:

Transport - Homework 1

1. The distance run at an average speed of $4 \mathrm{~m} / \mathrm{s}$ in 40 seconds is

A 0.1 m
B 10 m
C 44 m
D 160 m
2. How long would it take a car, travelling at 30 miles per hour, to travel a distance of 240 miles?

A 0.125 hours
B 8 hours
C 210 hours
D 9200 hours
3. The average speed, in m / s, of a car, which travels 6 km in a time of 5 minutes is

A 1.2.
B 20.
C 30 .
D 1200 .
4. Which of these is not a unit for the measurement of speed?

A metre per second
B kilometre per hour
C light year
D mile per hour
5. Which quantity is calculated from the area under a speed-time graph?

A distance
B time
C acceleration
D speed
6. Look at the speed-time graph for a moving object.

The graph shows that the object is
A moving with a constant acceleration and then stopping.
B moving with a constant speed and then stopping.
C moving with a constant acceleration and then a constant speed.
D moving with a constant speed and then accelerating.
7. To measure the average speed of a moving object between two points, X and Y ,

A the speed at X is subtracted from the speed at Y.
B the speed at Y is subtracted from the speed at X.
C the speed at the half way point is measured.
D the distance XY is divided by the time to move from X to Y .
8. What distance is travelled over 5 s by the object with this speed-time motion?

A 4 m
B 20 m
C 50 m
D 100 m
9. This is the speed- time graph of a moving object.
speed in m / s

Which correctly describes the object's motion?

A Constant acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$
B Constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$
C Constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$
D Constant acceleration of $50 \mathrm{~m} / \mathrm{s}^{2}$
10. What is the value of the uniform acceleration, calculated from this speed-time graph?

A $0.4 \mathrm{~m} / \mathrm{s}^{2}$
B $0.6 \mathrm{~m} / \mathrm{s}^{2}$
C $1.0 \mathrm{~m} / \mathrm{s}^{2}$
D $1.4 \mathrm{~m} / \mathrm{s}^{2}$
11. An object, travelling at $3 \mathrm{~m} / \mathrm{s}$, accelerates uniformly for 4 s at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ in a straight line. Its speed, in m / s, becomes

A 8 .
B 11 .
C 12.
D 14 .
12. This speed-time graph shows two accelerations.

The size of the smaller acceleration is
A $1 \mathrm{~m} / \mathrm{s}^{2}$.
B $1.33 \mathrm{~m} / \mathrm{s}^{2}$.
C $2 \mathrm{~m} / \mathrm{s}^{2}$.
D $10 \mathrm{~m} / \mathrm{s}^{2}$.
(Transport homework 1 continued on next page).
13. A car starts from rest and reaches a speed of $40 \mathrm{~m} / \mathrm{s}$ in a time of 8 seconds. Calculate its average acceleration.
14. How long would it take a train, travelling at $35 \mathrm{~m} / \mathrm{s}$, to stop with a uniform deceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$?
15. A car, travelling along a straight section of road, accelerates at a uniform rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 seconds.
(a) Calculate its change of speed.
(b) Why can't the final speed of the car be stated?
16. A cyclist in a long distance race decides to put on a spurt to break away from the pack, which is moving along a straight road at $14 \mathrm{~m} / \mathrm{s}$. He accelerates uniformly for 3 seconds at $1 \mathrm{~m} / \mathrm{s}^{2}$.
What speed does the cyclist reach?
17. (a) Draw a speed-time graph for the motion of a car described thus: the car starts from rest and accelerates uniformly to a top speed of $15 \mathrm{~m} / \mathrm{s}$ in 5 s . It remains at this speed for 10 s before decelerating uniformly to rest in 10 s .
[You must use graph paper for this question].
(b) Use the graph to calculate the total distance travelled by the car.

Transport - Homework 2

1. When the forces acting on an object are balanced, which of the following could describe its motion?

A It moves with a constant acceleration.
B It moves with a constant deceleration.
C It moves with an increasing speed.
D It moves with a constant speed.
2. Which speed-time graph best represents the motion of a stone dropped from rest from the surface of a deep lake?

3. A stone was dropped from rest above a lake and its speed was recorded till it reached the bottom. The speed time graph was as shown.

Which section of the graph represents a part of the stone's motion where it was acted on by balanced forces?

A KL
B LM
C MP
D PQ
4. An object has an unbalanced force acting on it. Which motion is not possible?

A Stays at rest.
B Moves sideways with a uniform acceleration.
C Moves up with an increasing acceleration.
D Moves up with a uniform downward acceleration.
5. In which situation will the forces cause the object to accelerate to the right?

6. In which situation could the object, acted on by forces as shown, be moving left with a constant speed?

7. Which list has situations which all need friction to be large?

A wheel bearings, shoe soles and bicycle brakes.
B shoe soles, bicycle brakes and tug-of-war ropes.
C shoe soles, skis and tug-of-war ropes.
D wheel bearings, skis and car gears.
8. Which statement best describes the use of seat belts in cars?

A Seat belts make people weigh less during a crash.
B Seat belts make people stop more quickly during a crash.
C Seat belts stop people moving during a crash.
D Seat belts reduce the force on people during a crash.
9. In which situation is the unbalanced force on the object not 4 newtons to the left?

$\mathrm{B} \longleftrightarrow 6 \mathrm{~N} \longrightarrow 2 \mathrm{~N}$
$\mathrm{C} \quad \stackrel{4 N}{4}_{\square}^{4 \mathrm{~N}}$
D 3 N
 2 N
10. Newton's 2nd Law of Motion may be expressed as F = ma. Which of these alternative expressions is correct?

A $\mathbf{a}=\mathrm{Fm}$
B $a=F / m$
C $a=m / F$
D $\mathbf{a}=\mathbf{m F}$
11. What is the mass of an object which accelerates at $3 \mathrm{~m} / \mathrm{s}^{2}$ when an unbalanced force of 12 N acts on it?

A 3 kg
B 4 kg
C 12 kg
D 36 kg
12. An object on a horizontal surface is acted on by two forces and it accelerates to the right at $2 \mathrm{~m} / \mathrm{s}^{2}$.

6 N

The mass of the object must be
A 3 kg .
B 6 kg .
C 9 kg .
D 12 kg .
(Transport Homework 2 continued on next page).
13. In each example, state the size and direction of the unbalanced force acting on the object.
(a)

(b)

14. Use the formula $\mathbf{F}=\mathbf{m a}$ to calculate the size and direction of the acceleration of the object, by firstly finding the unbalanced force acting on it.

(2)
15. What unbalanced force acts on a 80 kg mass if it accelerates at a rate of 1.6 metres per second per second?
16. What is the acceleration of a 12.5 kg mass which has no unbalanced force acting on it?
17. The car in the drawing is travelling along a straight, horizontal road.

The car's mass is 1200 kg and it is accelerating forward at $0.5 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the unbalanced force acting on the car and the size of ' \mathbf{f} ', the friction force.
18. An astronaut in her spacesuit has a mass of 90 kg before launch on Earth. What would be her mass and weight on the surface of the Moon where the gravitational field strength is $1.6 \mathrm{~N} / \mathrm{kg}$?

Transport - Homework 3

1. An unbalanced force causes an object of mass 2 kg to accelerate at a rate of $9 \mathrm{~m} / \mathrm{s}^{2}$. The same force would cause a 4 kg object to accelerate at

A $3 \mathrm{~m} / \mathrm{s}^{2}$.
B $4.5 \mathrm{~m} / \mathrm{s}^{2}$.
C $9 \mathrm{~m} / \mathrm{s}^{2}$.
D $18 \mathrm{~m} / \mathrm{s}^{2}$.
2. A spaceship of mass 6000 kg is in deep space. Its rocket engine is pushing with a thrust of 12000 N . The engine cuts out when the rocket is moving at $4000 \mathrm{~m} / \mathrm{s}$. What is the spaceship's speed 100 s later?
A $2000 \mathrm{~m} / \mathrm{s}$
B $3800 \mathrm{~m} / \mathrm{s}$
C $4000 \mathrm{~m} / \mathrm{s}$
D $4200 \mathrm{~m} / \mathrm{s}$
3. What is the weight of a 3 kg mass near the Earth's surface, where ' g ' is $10 \mathrm{~N} / \mathrm{kg}$?

A 3 kg
B 0.3 N
C 3 N
D 30 N
4. The gravitational field strength at the surface of a planet where a 2 kg object weighs 10 N is

A $2 \mathrm{~N} / \mathrm{kg}$.
B $5 \mathrm{~N} / \mathrm{kg}$.
C $10 \mathrm{~N} / \mathrm{kg}$.
D $20 \mathrm{~N} / \mathrm{kg}$.
5. A force of 6 N pulls a 2 kg mass in its own direction for a total distance of 3 m . The work done by the force is

A 2 joules.
B 6 joules.
C 18 joules.
D 36 joules.
6. A 2 kg box, weighing 20 N , is lifted as shown from floor to table, through a distance of 3 m .

The work done in lifting the box, in joules, is

A 3 .
B 6.
C 30 .
D 60 .
7. The formula for calculating the potential energy of a mass ' m ' raised through a height ' h ' is

A $E=m g$.
B $E=m g h$.
C $E=m h$.
D $E=1 / 2 m g h$.
8. The kinetic energy of a mass ' m ' moving at a speed ' v ' is calculated using the formula

A $E=1 / 2 m v$.
B $E=1 / 2 m v^{2}$.
C $E=2 m v^{2}$.
D $E=m v^{2}$.
9. What is the kinetic energy, in joules, of a 4 kg mass moving with a speed of $3 \mathrm{~m} / \mathrm{s}$?

A 6
B 18
C 36
D 72
10. The kinetic energy of a 1000 kg car, 3 s after accelerating from rest at $2 \mathrm{~m} / \mathrm{s}^{2}$, is

A 2 kJ .
B 18 kJ .
C 36 kJ .
D 180 kJ .
11. The correct expression relating power to energy is

A power $=$ time \div energy.
B power = energy x time.
C power = energy.
D power $=$ energy \div time.
12. What is the output power of a machine which can do 30 kJ of work in one minute?

A 0.5 watts
B 500 watts
C 1800 watts
D 30 kilowatts
13. A boy of mass 65 kg runs up a rough slope from \mathbf{A} to \mathbf{B} in 6.5 s .

What average power do the boy's legs develop in overcoming gravity?

A 50 W
B 120 W
C 500 W
D 1200 W
(Transport homework 3 continued on next page).
14. The wandering albatross can fly at speeds of up to $32 \mathrm{~m} / \mathrm{s}$ (the speed limit on Motorways!). One albatross was found to have flown 16250 km in 10 days.
Calculate its average speed in metres per second.
15. How high is a table if 480 J of work is done in lifting a 60 kg box from the floor to the table?
16. A 50 kg girl ran up a flight of stairs in 5 s . The stairs were 4 m high. Calculate:
(a) the potential energy gained by the girl and
(b) the average power developed by her legs against the force of gravity.
17. Calculate the kinetic energy of a mass of 2 kg moving with a speed of $3 \mathrm{~m} / \mathrm{s}$.
18.

To supply energy to work the mechanism of an oldfashioned pendulum clock, weights on the end of chains had to be lifted up to the top and allowed to fall down. The potential energy stored by the weights was released a bit at a time to keep the clock working. If one of these weights had a mass of 3 kg , how much energy did it release in falling through 90 cm ?

Electronics - Homework 1

1. Which of these materials is a type of semiconductor?

A copper
B silicon
C mercury
D glass
2. Which of the lamps, if any, might light up in this circuit?

A None
B Q only
C \mathbf{P} and \mathbf{Q} only
D \mathbf{Q} and \mathbf{R} only
3. Which is the circuit symbol for a photo diode?

4. Which is the circuit symbol for a light emitting diode (LED)?

B

D

5. Which is the circuit symbol for a thermistor?

C

6. A 2 V LED whose forward current is 10 mA is to be operated from a 6 V supply.

For the LED to operate as rated, the value of the 'protecting' resistor \mathbf{R} should be

A 200Ω.
B 400Ω.
C any value above 400Ω.
D 600 .
7. A girl sets up the circuit shown to observe the operation of an LED rated at $2 \mathrm{~V} ; 10 \mathrm{~mA}$. The LED fails to light up but is not faulty.

Why does the LED fail to light?
A The resistor value is too small.
B The resistor value is too large.
C The battery is the wrong way round.
D The battery voltage should be 2 V .
8. The block diagram of an electronic system has two terms missing . What are the missing terms ' X ' and ' Y '?

9. (a) From the following list, identify which four items could be used as input devices of an electronic system:
thermistor, LED, filament lamp, microphone, motor LDR, pressure switch, transistor, battery, buzzer, LCD
(b) In which part of an electronic system would a transistor be found?
10. In the circuit below, the ammeter reads 10 mA and the value of the resistor ' R ' is 700

(a) Calculate the voltage across the resistor.
(b) Calculate the voltage across the LED.
(c) What is the value of the current through the LED?
(d) Calculate the resistance of the LED when it is lit.
11. A LED is to be operated from a 6 V supply at its rated voltage of 2 volts. Its forward current is 10 mA . (That is the current when it is lit).

Calculate the value of the 'protecting' resistor ' \mathbf{R} ' needed to limit the current through the LED to 10 mA .
12. From the information given in the circuit diagram below, calculate the value of the supply voltage. The voltmeter reads 2.0 V .

Electronics - Homework 2

1. For a public address (PA) system, which parts represent the input, process and output stages?
input process output
A microphone loudspeaker amplifier
B microphone amplifier loudspeaker
C battery amplifier loudspeaker
D microphone battery loudspeaker
2. In this circuit, the reading on the voltmeter is 3.2 V when the temperature is $20^{\circ} \mathrm{C}$.

What might the reading be if the temperature rose to $25^{\circ} \mathrm{C}$?
(The thermistor's resistance decreases as it gets hotter).

A 2.5 V
B 3.2 V
C 4.3 V
D 5.5 V
3. What kind of logic gate is this?

A NOT gate
B AND gate
C OR gate
D NAND gate
4. A capacitor and resistor can be used as part of a time delay circuit.

Assuming that the capacitor is uncharged at first, which is the best description of what happens to the voltmeter reading after the switch is closed?

A It rises slowly from 0 V to 4.5 V .
B It rises slowly from 0 V to 9 V
C It becomes 9 V immediately.
D It slowly falls from 9 V to 0 V .
5. The diagram shows a logic gate and its incomplete truth table.

What numbers should replace $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} ?

	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}
A	0	1	1	1
B	1	0	0	0
C	1	1	1	0
D	0	1	1	0

6. What kind of logic gate is in Q5?

A OR gate
B NOR gate
C NOT gate
D AND gate
7. A girl sets up the circuit shown to observe the operation of an LED. The LED fails to light up.

What is wrong with her circuit? (None of the components is faulty).
8. (a) In the circuit shown, what is the voltage across (i) the resistor and (ii) the switch when the switch is open?
(b) What is the voltage across (i) the resistor and (ii) the switch when the switch is closed?

(2)
9. In this circuit, the transistor acts as a switch.

(a) Is the transistor switched on or off when the switch is open?
(b) Is the LED on or off?
(c) What happens when the switch is closed?
10. Redesign the circuit in Q9, using the same components so that the LED is on when the switch is closed.
11. The circuit below is designed to switch on the LED when the temperature falls below a certain value.

Explain whether or not it would operate as planned.
12. A capacitor and resistor can be used as part of a time delay circuit.

In the circuit shown above, the capacitor charges when the switch is closed. The time it takes to charge to a certain voltage depends on two factors other than the battery voltage.
(a) What are the two factors which affect the time to charge the capacitor?
(b) State two changes which could be made to circuit components, each of which would increase the charging time.
13. The circuit below is designed to switch on the buzzer a certain time after the switch is opened.

(a) Explain how the circuit operates, in terms of the voltage across the capacitor.
(b) If the buzzer is found to sound too quickly, suggest one change which could be made to circuit components, each of which would increase the time taken for the buzzer to sound.

Energy Matters - Homework 1

1. Which is a renewable energy source?

A wind
B coal
C oil
D nuclear
2. Which is a non-renewable energy source?

A waves
B hydroelectric
C solar
D gas
3. A solar cell makes 5 joules of electricity for every 50 joules of light that shine on it. What is its efficiency in turning light energy into electrical energy?

A 5%
B 10\%
C 45%
D 250\%
4. In the core of the reactor of a nuclear power station, which sub-atomic particles cause chain reactions to take place?

A nuclei
B electrons
C protons
D neutrons
5. A wire is pushed downwards through a magnetic field and a current is induced in the wire.

Which action would not increase the size of this current?

A Moving the wire faster.
B Using stronger magnets.
C Moving the wire up more slowly.
D Making two loops of wire pass through the magnetic field.
6. For a transformer, which formula gives the relationship between the primary and secondary voltages and turns?

A $\quad \frac{\mathbf{V}_{\mathbf{s}}}{\mathbf{V}_{\mathbf{p}}}=\frac{\mathbf{N}_{\mathbf{p}}}{\mathbf{N}_{\mathbf{s}}}$
B $\quad \frac{\mathbf{V}_{\mathbf{s}}}{\mathbf{V}_{\mathbf{p}}}=\frac{\mathbf{N}_{\mathbf{s}}}{\mathbf{N}_{\mathbf{p}}}$
C $\quad \frac{\mathbf{V}_{\mathbf{s}}}{\mathbf{N}_{\mathrm{p}}}=\frac{\mathbf{V}_{\mathrm{p}}}{\mathbf{N}_{\mathbf{s}}}$
D $\quad \mathbf{N}_{\mathbf{p}} \mathbf{V}_{\mathrm{p}}=\mathbf{N}_{\mathbf{s}} \mathbf{V}_{\mathbf{s}}$
7. Which statement(s) about real transformers is/are correct?

I They work with a d.c. supply.
II The coils are wound on a soft iron core.
III They have no energy losses.
A I only
B II only
C II and III only
D I, II and III
8. A step-down transformer has a turns ratio of 29:1. What voltage appears across its secondary coil if the voltage across its primary is 230 V a.c.?

A 8V
B 29 V
C 201 V
D 6670V
9. A toy steam engine burns solid paraffin to make heat which is used to boil water into steam. The steam operates a piston which turns the driving wheels.
(a) If 18 J of useful mechanical energy is produced when 300 J of chemical energy is extracted from the paraffin, calculate the efficiency of the steam engine.
(b) How many joules out of every hundred are wasted?
10. A model hydroelectric power station produces just enough electric power to light a 6 W lamp. If the model is found to be 80% efficient at converting the potential energy of the water into electricity, what is the input power of the water running through the pipes?
11. A step-down transformer has a turns ratio of $30: 1$. It has 6000 turns in the primary coil. Calculate the number of turns in its secondary coil.
12. (a) In a very well constructed transformer which has very few energy losses, how does the secondary output power compare with the primary input power?
(b) Assuming that a transformer is 100% efficient, how much power would need to be supplied to the primary if a 12 volt, 24 watt lamp was lit at its rated voltage from the secondary?
(c) Calculate the current drawn from the 230 V a.c. mains by the primary winding of a transformer which supplies 23 watts of power to a lamp across the secondary winding.
(Assume the transformer does not lose any energy).
13. In the circuit shown, a mains step-down transformer supplies power to two $12 \mathrm{~V}, 24 \mathrm{~W}$ lamps, wired in parallel. Assume the transformer is 100 \% efficient.

(a) What total power is delivered to the lamps?
(b) Calculate the current in the transformer's secondary winding.
(c) Calculate the current in the primary winding.
(d) How many turns are in the primary winding?

Energy Matters - Homework 2

1. Electricity is generated at 11 kV but is transmitted for large distances across country at very high voltages (132 kV or 400 kV). What is the reason for using such high voltages?

A It stops people going too near.
B It increases the total amount of power generated.
C It reduces the power cables' resistance.
D It reduces the amount of energy lost through heating of the cables.
2. $20,000 \mathrm{~W}$ of electric power is to be transmitted at 200 volts through long power cables with a total resistance of 0.5Ω. How much power would be wasted in heating the cables?

A 0.005 W
B 0.05 W
C 50 W
D 5000 W
3. When the conducting wire is moved down and then up, once only between the two magnets, a current is induced which causes a deflection on the meter pointer.

How is the pointer's deflection described?

A It moves to \mathbf{x} and back to $\mathbf{0}$.
B It moves to \mathbf{x} and back to $\mathbf{0}$, then to \mathbf{x} and back to $\mathbf{0}$.
C It moves to \mathbf{x} and then to \mathbf{y} and back to 0 .
D It moves to \mathbf{y} and back to $\mathbf{0}$.
4. When 8000 J of heat is added to 2 kg of a substance, its increase in temperature is 10 celsius degrees. The specific heat capacity of the substance is given by

A $8000 \times 10 \times 2$.
B $\frac{8000 \times 10}{2}$.
C $\frac{8000 \times 2}{10}$.
D $\frac{8000}{2 \times 10}$.
5. The specific heat capacity of water is $4200 \mathrm{~J} / \mathrm{kgK}$. By how much would the temperature of 500 g of water increase if 42000 J was added to it?

A $0.02 \mathrm{C}^{\circ}$
B $2 \mathrm{Co}^{\circ}$
C $5 \mathrm{C}^{\circ}$
D 200°
6. A 2 kg lump of metal, which has a specific heat capacity of $400 \mathrm{~J} / \mathrm{kgK}$, has heat added to it for 4 minutes at the rate of 50 W . Assuming that no heat is lost from the metal, its temperature rise, in celsius degrees is calculated from

A $\frac{400 \times 2}{50 \times 4 \times 60}$.
B $\frac{400 \times 2}{50 \times 4}$.
C $50 \times 4 \times 60$.
400×2
D $\frac{50 \times 4}{400 \times 2}$.
7. The specific latent heat of fusion of ice is $334,000 \mathrm{~J} / \mathrm{kg}$. The heat needed to melt 50 g of ice at its melting point $\left(0^{\circ} \mathrm{C}\right)$ is

A $50 \times 334,000 \mathrm{~J}$.
B $0.05 \times 334,000 \mathrm{~J}$.
C $50 \times 0 \times 334,000 \mathrm{~J}$
D $50.05 \times 0 \times 334,000 \mathrm{~J}$.
8. It takes 3200 joules of heat to melt 5 grams of gold at its melting point. What is the specific latent heat of fusion of gold in J/kg?

A 160
B 640
C 16000
D 64000
9. The total heat, in joules, needed to melt a 2 kg block of ice, removed from a freezer at $-18^{\circ} \mathrm{C}$, into 2 kg of water at $0^{\circ} \mathrm{C}$ s found from

A $2100 \times 2 \times 18$
B $2 \times(334,000+2100)$
C $(4200 \times 2 \times 0)+(2 \times 334,000)$
D $(2100 \times 2 \times 18)+(2 \times 334,000)$
(specific heat capacity of ice $=2100 \mathrm{~J} / \mathrm{kgK}$) (specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kgK}$) (specific latent heat of ice $=334,000 \mathrm{~J} / \mathrm{kg}$)
10. The heat from the Sun reaches the Earth across space by

A conduction only.
B convection only.
C radiation only.
D conduction, convection and radiation.
11. Convection currents can occur in

A solids only.
B liquids only.
C gases only.
D liquids and gases only.
12. Which teapot is likely to lose its heat fastest by radiation ?
A

B

C

D

13. Glass fibre, woolly jumpers and expanded polystyrene granules are all used as insulators. The factor which most makes them good insulators is that

A they are all non-metals.
B they are all bulky.
C they all contain trapped air.
D they are all waterproof.
14. All the houses are identical in every way, including insulation. The inside and outside air temperatures are shown. Which house loses heat fastest?

A

B

C

D

(Energy Matters homework 2 continued on next page).

Note: (1) specific latent heat of fusion of ice at $0^{\circ} \mathrm{C}=3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
(2) specific latent heat of vaporisation of water at $100^{\circ} \mathrm{C}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
15. Calculate the specific heat capacity of a 3 kg piece of metal which experiences a temperature rise of $25 \mathrm{C}^{0}$ when heat is supplied to it at a rate of 60 watts for 10 minutes, if a total of 3000 joules escapes to the surroundings.
16. A block of ice sitting in a room with an air temperature of $10^{\circ} \mathrm{C}$ has a concave dent in its top surface which fills with melt water from the block.

The temperature of the water is measured.
(a) What would be the temperature of the water?
(b) Explain.
17.

The temperature of the water in a boiling kettle is measured and found to be $100^{\circ} \mathrm{C}$. The thermometer is now held inside the spout to measure the temperature of the steam. What would its temperature be?
18. Which requires more heat:

1: boiling 20 grams of water at $100^{\circ} \mathrm{C}$ into 20 g of steam at $100^{\circ} \mathrm{C}$ or
2: melting 135 g of ice at $0^{\circ} \mathrm{C}$ into 135 g of water at $0^{\circ} \mathrm{C}$?
You must show working.

