Questions for Standard Grade, Intermediate 2 and Higher Physics

- click on bookmark topic in left column to go to start page
- topics that are for Higher Physics are bookmarked in red
- topics are grouped under three headings:

Mechanics (motion, forces, energy etc)
Electricity (circuits, a.c., electromagnetism, electronics etc)

Light, Heat etc (optics, properties of matter, radioactivity, uncertainties and miscellaneous)

- click on triangle at left of group name to open or close list
- answers are grouped under same headings and are in topic order

Speed $=$ distance \div time

1. Use the formula: "speed = distance \div time" to calculate the missing values from the table.

distance in m	time in \mathbf{s}	speed in m/s
100	10	-
990	3	-
2×10^{3}	5	-
-	530	
-	-	3×10^{8}
-	-	640
3600	-	3×12
1.2×10^{9}	340	

2. A marathon race is run over a distance of 42730 metres. A top runner can complete the course in 2 hours 10 minutes.
Calculate the average speed of the runner in metres per second.
3. How far would a person run in 15 seconds at an average speed of $7 \mathrm{~m} / \mathrm{s}$?
4. How long would a car take to travel 2.4 km at an average speed of $30 \mathrm{~m} / \mathrm{s}$?
5. A good long distance runner has a typical average speed of $6 \mathrm{~m} / \mathrm{s}$.

How far would the runner go in 30 minutes?
6. A top woman marathon runner has an average speed of $5 \mathrm{~m} / \mathrm{s}$.

The marathon race is run over 26.3 miles.
Calculate her time for the race to the nearest minute. (1 mile $=1625$ metres)
7. Concorde has a top speed of around Mach 2; (that is, twice the speed of sound in air.) Calculate its time to fly across the Atlantic Ocean from London to New York at this speed, a distance of 7600 km . (Speed of sound in air $=340 \mathrm{~m} / \mathrm{s}$.)
8. The London-Glasgow shuttle takes approximately 60 minutes to fly a distance of 650 km . Estimate its average speed in m / s.
9. The wandering albatross can fly at speeds of up to $32 \mathrm{~m} / \mathrm{s}$ (the speed limit on Motorways!) One albatross was found to have flown 16250 km in 10 days. Calculate its average speed in metres per second.
10. A cross-channel ferry travels at about $7 \mathrm{~m} / \mathrm{s}$. At the same average speed, how long would it take to cross the Atlantic Ocean, a distance of 6700 km ? Answer to the nearest hour.
11. How long would a car, travelling at an average speed of 50 mph (miles per hour), take to travel a distance of 600 miles?
12. A bus travels between two towns which are 20 km apart in a time of 30 minutes.

Calculate the average speed of the bus in km/h (kilometres per hour.)
13. How far would a cyclist travel in 2 hours 30 minutes at a steady speed of $15 \mathrm{~km} / \mathrm{h}$?
14. How many laps of a 400 metre running track would a runner make in 5 minutes at an average speed of $4 \mathrm{~m} / \mathrm{s}$?
15. A bullet, fired from a rifle, moves through the air at $500 \mathrm{~m} / \mathrm{s}$.

How long would it take to reach a target 25 metres away?
16. Calculate the average speed of a tortoise which takes 40 seconds to walk across a 4 metre wide room. Express your answer in:
(a) metres per second,
(b) centimetres per second.
17. The national record for the 100 m sprint for men in a certain country is 10.3 s .

Calculate the average speed run over the distance by the holder of the record (to the nearest tenth of a metre per second.)
18. A sock on the rim of a washing machine drum whilst it is spinning goes round in a circular path of radius 20 cm at a rate of 15 times per second.
Calculate the speed of the sock in metres per second (to the nearest whole number.)
Remember that the circumference of a circle, $c=2 \pi r$.
19. A cheetah can run for a short time at a speed of $36 \mathrm{~m} / \mathrm{s}$.

At this speed, how far could the cheetah run in 2.5 s?
20. In making an emergency stop to avoid hitting a broken down car, a motorist brings her car to a halt at an average speed of $14 \mathrm{~m} / \mathrm{s}$ in a time of 4.4 s .
Show whether or not she did avoid the car if it was 62 m away from her own car when she began braking.
21. A typical walking speed is $1.2 \mathrm{~m} / \mathrm{s}$. At that speed, how long would someone take to walk the distance that a car would travel in 30 minutes at $24 \mathrm{~m} / \mathrm{s}$?
22. At what approximate speed does a bowler bowl a cricket ball if it travels the length of the pitch to the batsman (20 metres) without bouncing in 0.4 s ?
23. The swimming record for the men's 200 metre breaststroke is 2 min 10 s . Calculate the average speed of the swimmer over the distance (to the nearest hundredth of a metre per second.)
24. The speed of sound through the air is $340 \mathrm{~m} / \mathrm{s}$. How long would the sound from a singer take to reach from the stage to the back of a concert hall which is 55 m long?
25. In astronomy, a 'light-year' is the distance travelled through space by light at 300 million metres per second. How far is one light-year in kilometres?

Acceleration $=$ change of velocity \div time

1. Use the formula "acceleration $=$ change of velocity \div time" to calculate the missing entries in the table.

accel. (m/s $\mathbf{2})$	change of velocity (m/s)	time (s)
-	20	5
-	-30	3
10	-	2.5
15	-	-5
9.8	20	-
2×10^{3}		

2. Use the formula $\mathbf{a}=(\mathbf{v}-\mathbf{u}) / \mathbf{t}$ to calculate the missing entries in the table.

accel. (m/s $\mathbf{2}^{2}$	$\mathbf{v}(\mathbf{m} / \mathbf{s})$	$\mathbf{u}(\mathbf{m} / \mathbf{s})$	time (s)
-	20	0	4
-	26	12	2
-	0	10	4
-	4	20	4
-	6	6	10
10	-	20	2
4	-	2	2.5
-5	-	10	2
-10	-	70	6
20	40	-	2
5	10	-	1
-3	30	-	10
-5	-10	-	10
10^{3}	2000	0	-
0.5	20	15	-
-6	0	36	-
-4	-6	22	-

3. A sprinter is found to take 3.0 seconds to reach his top sprinting speed of $10.5 \mathrm{~m} / \mathrm{s}$ in a straight line. Calculate his average acceleration.
4. A car starts from rest and reaches a speed of $40 \mathrm{~m} / \mathrm{s}$ in a time of 8 seconds. Calculate its average acceleration.
5. A certain make of car can reach 60 m.p.h. from rest in a time of 9.0 seconds. Calculate its average acceleration in $\mathrm{m} / \mathrm{s}^{2} . \quad(1 \mathrm{~m} . \mathrm{p} . \mathrm{h} .=0.45 \mathrm{~m} / \mathrm{s})$
6. Calculate the change of speed experienced by a train which accelerates for 9 seconds at a rate of $2.5 \mathrm{~m} / \mathrm{s}^{2}$ in a straight line.
7. In overtaking a lorry on a straight section of road, a driver increases speed from 50 m.p.h. to 70 m.p.h. in 5 s . Calculate the acceleration in:
(a) miles per hour per second,
(b) $\mathrm{m} / \mathrm{s}^{2}$
($1 \mathrm{~m} . \mathrm{p} . \mathrm{h} .=0.45 \mathrm{~m} / \mathrm{s}$)
8. In making an emergency stop, a car driver brings her car to rest in a straight line without skidding. If the car had been travelling at $18 \mathrm{~m} / \mathrm{s}$ before the braking began and it stopped after 3 seconds, calculate the value of the average acceleration. Why does it have a negative value?
9. How long would it take a train, travelling at $35 \mathrm{~m} / \mathrm{s}$, to stop with a uniform deceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$?
10. A car, travelling along a straight section of road, accelerates at a uniform rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 seconds. Calculate its change of velocity.
(Can you state what its final speed would be? Why?)
11. A cyclist in a long distance race decides to put on a spurt to break away from the pack, which is moving along a straight road at $14 \mathrm{~m} / \mathrm{s}$. He accelerates uniformly for 3 seconds at $1 \mathrm{~m} / \mathrm{s}^{2}$. What speed does the cyclist reach?
12. A piece of rock tumbles from the top of a crater on the Moon. It free-falls from rest to a speed of $19.2 \mathrm{~m} / \mathrm{s}$ in 12 seconds before hitting the ground.
Calculate the value of the Moon's gravitational acceleration.
13. In a trolley 'explosion' experiment, one trolley reaches a top speed of $50 \mathrm{~cm} / \mathrm{s}$ in 0.2 s . Calculate its average acceleration in $\mathbf{c m} / \mathbf{s}^{\mathbf{2}}$ and $\mathbf{m} / \mathbf{s}^{\mathbf{2}}$.
14. In a car crash, a passenger, restrained by his seat belt, is brought to rest in 150 milliseconds from a speed of $10 \mathrm{~m} / \mathrm{s}$. Calculate his average deceleration.
15. A light plane has to reach a speed of $36 \mathrm{~m} / \mathrm{s}$ on the runway to achieve lift-off. How long would it take to reach this speed from rest with an average acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$?
16. Give an example of an object moving at a constant speed whilst accelerating. (Hint: remember that acceleration describes the change of an object's velocity.)
17. A bullet, fired from a rifle, reaches a speed of $500 \mathrm{~m} / \mathrm{s}$ in a time of 0.2 s . Calculate the average acceleration of the bullet during firing.
18. The engines of a large ship on the open sea are stopped and the ship, which had been moving at $8 \mathrm{~m} / \mathrm{s}$, takes 16.7 minutes to stop dead in the water. Calculate the average deceleration of the ship in $\mathrm{m} / \mathrm{s}^{2}$.
19. An electron accelerates from rest to a speed of $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$ in a time of just 1.5 ns . Calculate its average acceleration. ($1 \mathrm{~ns}=1$ nanosecond $=10^{-9} \mathrm{~s}$)
20. A runner, during a race, accelerates past another runner at a rate of $0.1 \mathrm{~m} / \mathrm{s}^{2}$ for 4 s .
(a) During this time, how much faster does the runner run?
(b) If she was running at $3 \mathrm{~m} / \mathrm{s}$, what is her speed after accelerating?

Equations of motion

For the following questions, use the following 'equations of motion' for an object moving in a straight line with uniform acceleration:

$$
\begin{aligned}
& v=u+a t \\
& s=u t+1 / 2 a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& s=\frac{(u+v)}{2} t
\end{aligned}
$$

Unless stated otherwise, take Earth's gravitational acceleration to be $10 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$.

1. In the 'equation of motion': $\mathbf{v}=\mathbf{u}+\mathbf{a t}$, in what $\mathbf{u n i t}$ is the term 'at' measured?
2. For a uniformly accelerated motion, what is calculated by halving the sum of the initial velocity ' u ' and the velocity ' v ' after time ' t '?
3. A car accelerates uniformly from $10 \mathrm{~m} / \mathrm{s}$ to $24 \mathrm{~m} / \mathrm{s}$. What is its average speed?
4. A car starts at rest and accelerates uniformly at $3 \mathrm{~m} / \mathrm{s}^{2}$ for 4 seconds in a straight line. Find its speed after 4 seconds and how far it has travelled.
5. Which quantity is represented by the term ' $1 / 2$ at ${ }^{2}$ ' and in which unit could it be measured?
6. A car moving at $8 \mathrm{~m} / \mathrm{s}$ accelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$ for 5 s in a straight line. Find the extra distance travelled by the car from the start of the acceleration.
7. What is the final velocity of an object which accelerates in a straight line over a distance of 13 m at a steady rate of $6 \mathrm{~m} / \mathrm{s}^{2}$ from a starting velocity of $10 \mathrm{~m} / \mathrm{s}$?
8. In the equation ' $\mathbf{v = u} \mathbf{u} \mathbf{a t}$ ', what do the terms ' \mathbf{u} ' and 'at' represent?
9. What time has elapsed if an object, accelerating uniformly at $4 \mathrm{~m} / \mathrm{s}^{2}$ from $20 \mathrm{~m} / \mathrm{s}$ in a straight line, travels an extra distance of 150 m ?
10. In what unit might the term ' $\sqrt{ } \mathbf{2 a s}$ ' be expressed?
11. What was the initial velocity of an object, accelerating uniformly in a straight line at $12.5 \mathrm{~m} / \mathrm{s}^{2}$, which has a displacement of 20 m in reaching a velocity of $30 \mathrm{~m} / \mathrm{s}$?
12. Find the average speed of a car which decelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$ for 3 s from an initial speed of $20 \mathrm{~m} / \mathrm{s}$.
13. A stone is thrown vertically upwards at $40 \mathrm{~m} / \mathrm{s}$. How long does it take to reach its highest point? (' g ' $=10 \mathrm{~m} / \mathrm{s}^{2}$) Where is it after 8 seconds?
14. A train travelling in a straight line at $100 \mathrm{~m} / \mathrm{s}$ decelerates to rest at a uniform rate and travels an extra distance of 1250 m .
Find the size of the train's deceleration.
15. How long would an object take to travel 210 m from an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ with a uniform acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$?
16. What is the greatest height a ball could reach if kicked at a speed of $8 \mathrm{~m} / \mathrm{s}$ at the surface of the Moon where the gravitational field strength is $1.6 \mathrm{~N} / \mathrm{kg}$?
17. A train, travelling at a steady velocity, starts to decelerate at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. After 3 seconds it has travelled a further displacement of 102 m in a straight line. Find the velocity from which it decelerated.
18. For an object accelerating from rest, which quantity is calculated by taking the square root of double the product of acceleration and displacement?
19. An object, travelling at $10 \mathrm{~m} / \mathrm{s}$ in a straight line, starts to accelerate and, after 2 seconds, has travelled 24 metres. How much further would it have travelled in the same time with double the acceleration?
20. A boy jumps from the top of a 4 metre diving board. Calculate his speed just before hitting the water, ignoring the effect of air resistance and taking ' g ' as $10 \mathrm{~N} / \mathrm{kg}$.
(Assume he falls vertically.)
21. The gravitational acceleration near the surface of Mars is $3.7 \mathrm{~m} / \mathrm{s}^{2}$.

A rock free falls from the top of a 200 metre high cliff. How long would it take to reach the foot of the cliff and what would its maximum speed be?
22. A car, travelling at a speed of $30 \mathrm{~m} / \mathrm{s}$ in a straight line, brakes and decelerates at a uniform rate of $2 \mathrm{~m} / \mathrm{s}^{2}$. How much further does it travel before coming to rest?
23. A car accelerates along a straight road from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 5 seconds. How far does it travel during this period of acceleration?
24. In the 'equation of motion' $s=u t+1 / 2$ at 2, which quantities are represented by the terms 'ut' and ' $\mathbf{1} / \mathbf{2}$ at ${ }^{2}$ '?
25. A car, which was travelling at $20 \mathrm{~m} / \mathrm{s}$, accelerates in a straight line for 5 s at $2 \mathrm{~m} / \mathrm{s}^{2}$. Calculate its average speed and the extra distance moved.
26. A stone, thrown vertically upwards from the very edge of a cliff at $10 \mathrm{~m} / \mathrm{s}$, reaches the foot of the cliff after 5 seconds. What is the height of the cliff?
27. A steel ball is dropped from rest and timed electronically over 40 cm . If the measured time is 0.29 seconds, what value does this give for ' g '?
28. A stone is thrown vertically upwards at $15 \mathrm{~m} / \mathrm{s}$. After what time is the stone 10 m above its starting point and falling? (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.)
29. A swimmer dives vertically from the 6 metre board and, in doing so, his centre of gravity reaches a height of 1.5 metres above the board.
Find the swimmer's approximate speed on hitting the water.
30. Calculate the acceleration of a car which, from $20 \mathrm{~m} / \mathrm{s}$, travels a further 78 metres in a straight line in 3 seconds.
31. A car, travelling along a straight road at $50 \mathrm{~m} / \mathrm{s}$, decelerates uniformly to rest in a time of 10 seconds. How far does it move in coming to rest?
32. A stone is thrown horizontally from an 80 m high cliff at $30 \mathrm{~m} / \mathrm{s}$. Find how long it takes to fall to the sea below and its velocity (size and direction) as it enters the water.
(' g ' $=10 \mathrm{~m} / \mathrm{s}^{2}$)
33. On Mars, where the gravitational field strength is $3.7 \mathrm{~N} / \mathrm{kg}$, a stone is projected horizontally at $24 \mathrm{~m} / \mathrm{s}$ from the edge of a cliff which is 200 m high.
After what time would the stone be falling at an angle of 45° to the vertical?
34. When travelling at $30 \mathrm{~m} / \mathrm{s}$, a car's engine cuts out and it starts to decelerate because of frictional forces. If the frictional forces total 1 kN and remain constant and the car's mass is 1600 kg , how fast is it moving after 4 seconds?
35. A stone is thrown horizontally from the edge of a cliff at $24.5 \mathrm{~m} / \mathrm{s}$. Ignoring the effect of air resistance and taking ' g ' as $9.8 \mathrm{~m} / \mathrm{s}^{2}$, calculate how long after being thrown the stone's motion makes an angle of 45° to the horizontal.
36. A fireworks rocket 'burns out' at a height of 150 m and a speed of $40 \mathrm{~m} / \mathrm{s}$.

What is its acceleration 1 second later, neglecting air resistance?
37. A shell is fired from a cannon with a muzzle velocity of $200 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the horizontal.
How long does it take to reach its maximum height and how far does it travel before hitting the ground? (Take ' g ' $=10 \mathrm{~m} / \mathrm{s}^{2}$.)
38. A train, travelling at $60 \mathrm{~m} / \mathrm{s}$, decelerates uniformly to rest at $2 \mathrm{~m} / \mathrm{s}^{2}$. How far does it travel during the braking?
39. How long would a stone, thrown horizontally from the top of a 122.5 m high cliff, take to reach the sea below?
Would the horizontal speed matter?
(${ }^{\prime} \mathrm{g}$ ' $=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
40. At the surface of the Moon, the gravitational field strength is approximately $1.6 \mathrm{~N} / \mathrm{kg}$.
(a) How long would a $\mathbf{1 k g}$ rock take to fall to the bottom of a 2880 metre high crater, projected horizontally from the edge?
(b) How long would a $\mathbf{2} \mathbf{k g}$ rock take to fall?

Vertical Motion

[Unless stated otherwise, all questions relate to the Earth for which you should assume the gravitational acceleration, ' g ', to be $10 \mathrm{~m} / \mathrm{s}^{2}$. Also, the effects of air resistance should be ignored.]

1. For an object dropped vertically from rest, what is its speed after:
(a) 1 s
(b) 2 s
(c) 3 s
(d) 3.4 s
(e) 0.6 s ?
2. For an object dropped vertically from rest, how far has it fallen after:
(a) 1 s
(b) 2 s
(c) 3 s
(d) 3.4 s
(e) 0.6 s ?
3. (a) How long would it take a 1 kg object to fall 45 metres from rest?
(b) How long would it take for a 2 kg object to fall the same distance?
4. A boy drops a coin into a wishing well and discovers that it takes 1.8 seconds to reach the bottom. How deep is the well?
5. A bomb is released from the bomb-bay of a plane in level flight at 3000 metres. How far has the bomb fallen when it is falling at a speed of $40 \mathrm{~m} / \mathrm{s}$?
6. A child jumps straight down from a 10 metre high diving board into a swimming pool. For how long would the child be in the air?
7. The Grand Canyon in Colorado, USA, is more than one mile deep in places. If it is exactly one mile (1625 metres) deep at one spot, how long would a rock take to fall down from top to bottom? Would the weight of the rock affect the time?
8. On Mars, in the year 2397, a metal plate falls from the top of the 3000 m high 'Federation Tower' and hits the ground 40 seconds later.
Calculate the value of the gravitational acceleration on Mars.
9. On the Moon, the acceleration due to its gravity is $1.6 \mathrm{~m} / \mathrm{s}^{2}$.

How fast would an object be moving when it hit the Moon's surface if it was dropped from rest from a height of 2.1 metres? (Answer to two significant figures).
10. A girl drops a coin down a well from rest. It takes 2.0 seconds to hit the water at the bottom.
(a) How deep is the well?
(b) It she threw another coin down and it left her hand at a speed of $15 \mathrm{~m} / \mathrm{s}$, how long would it take to reach the bottom?
11. A stone is thrown down from the top of a high cliff with an initial vertical velocity of $10 \mathrm{~m} / \mathrm{s}$. What is the stone's vertical velocity after:
(a) 1 s
(b) 2 s
(c) 3 s
(d) 3.4 s
(e) 0.6 s ?
12. A stone is thrown down from the top of a high cliff with an initial vertical velocity of $10 \mathrm{~m} / \mathrm{s}$. What is the stone's vertical displacement after:
(a) 1 s
(b) 2 s
(c) 3 s
(d) 3.4 s
(e) 0.6 s ?
13. A stone is thrown vertically upwards from the top of a high cliff with an initial velocity of $-12 \mathrm{~m} / \mathrm{s}$. What is the stone's vertical velocity after:
(a) 1 s
(b) 2 s
(c) 3 s
(d) 3.4 s
(e) 0.6 s ?
14. A stone is thrown vertically upwards from the top of a high cliff with an initial velocity of $-12 \mathrm{~m} / \mathrm{s}$. What is the stone's vertical displacement after:
(a) 1 s
(b) 2 s
(c) 3 s
(d) 3.4 s
(e) 0.6 s ?
15. If an object is projected vertically upwards at $30 \mathrm{~m} / \mathrm{s}$, how long does it take to reach its highest point and how high does it reach?
16. A man fires a stone from a catapult, aiming it straight up.

If the stone leaves the device at a speed of $28 \mathrm{~m} / \mathrm{s}$, what height does it reach?
17. A stone is projected vertically upwards from a catapult at $32 \mathrm{~m} / \mathrm{s}$.
(a) Where is it after 2.0 seconds, what is its speed and in which direction is it moving?
(b) Find its position, speed and direction of motion after 4.0 seconds.
(c) What is the size and direction of the stone's acceleration on the way up, on the way down and at its highest position?
18. A coin is thrown down a 60 m deep well with an initial speed of $20 \mathrm{~m} / \mathrm{s}$.
(a) What is its acceleration 1.3 seconds later?
(b) How long does the coin take to reach the bottom of the well?
19. A stone is thrown straight up from the edge of a very deep well at a speed of $15 \mathrm{~m} / \mathrm{s}$.
(a) How long does it take to reach its highest point?
(b) How high above the edge of the well does it reach?
(c) How long does the stone take to come back to the top of the well?
(d) Where is the stone 4.0 seconds after being thrown?
(e) How deep is the well if the stone is moving at $35 \mathrm{~m} / \mathrm{s}$ when it hits the water?
20. A cricketer catches a ball to dismiss a batsman and throws the ball straight up in the air to celebrate. If he catches it again 3.6 seconds later, how high did the ball go?
21. A lift is moving upwards at $3.0 \mathrm{~m} / \mathrm{s}$ when a bolt breaks loose from its bottom edge and falls to the bottom of the lift shaft. If it takes 6.0 seconds to hit the foot of the shaft, at what height above the foot of the shaft was the bottom edge of the lift when the bolt fell off?
22. A tennis ball is hit straight upwards.
(a) At what speed was it hit if, 5.0 seconds later, it is moving downwards at $20 \mathrm{~m} / \mathrm{s}$.
(b) What height does the ball reach?

Graphs - straight line motion

1. How does the slope (or gradient) of a velocity-time graph for a moving object depend on the size of the object's acceleration?
2. Sketch the shape of a velocity-time graph for an object moving with a decreasing acceleration, starting from rest.
3. Sketch the shape of a velocity-time graph for the motion of an object which starts at rest and has an increasing acceleration.
4. Which quantities are calculated by the areas under:
(a) a speed-time graph
(b) a velocity-time graph?
5. Sketch the velocity-time graph for the first three bounces of a ball dropped vertically from rest, assuming that some mechanical energy is lost during each bounce.
6. Sketch the likely shape of the speed-time graph for the motion of a stone released from rest from the surface of a deep loch.
7. Sketch a speed-time graph for an object which moves with decreasing deceleration from a starting speed ' \mathbf{u} ' to rest in ' \mathbf{t} ' seconds.
8. Sketch a possible speed-time graph for a sky diver from the instant of jumping out of a stationary balloon till just before the parachute is opened when he is travelling with a terminal velocity of $60 \mathrm{~m} / \mathrm{s}$.
9. Describe the shape of graph which would be obtained if, for a moving object of a certain mass, its kinetic energy at different velocities was plotted against the square of its velocity.
10. Which quantities are found from the areas under the lines of:
(a) a force-time graph
(b) an acceleration-time graph?

11. Which quantities are found from the gradients of:
(a) velocity-time graphs
(b) distance-time graphs?
12. The areas under which graphs would calculate, for an object:
(a) change of momentum
(b) distance
(c) change of velocity?
13. The gradient of a velocity-time graph at one point is found to be 2.5.

If the velocity is measured in 'metres per second' and the time in 'seconds', state the value of the acceleration at that point?
14. Describe the motion of the object for which the distance-time graph has been constructed.

15. Describe the motion of the object for which the distance-time graph has been constructed.

16. Describe the motion of the object for which the distance-time graph has been constructed.

17. Describe the motion of the object for which the distance-time graph has been constructed.

18. Describe the motion of the object for which the velocity-time graph has been constructed.

19. For the motion described by the velocity-time graph in Q18, sketch a possible distance-time graph.
20. In Q18, what is the gradient of the velocity-time graph?
21. Describe the motion of the object for which the velocity-time graph has been constructed.

22. For the motion described by the velocity-time graph in Q21, sketch:
(a) a possible distance-time graph
(b) a possible acceleration-time graph.
23. Describe the motion of the object for which the velocity-time graph has been constructed.

24. For the motion described by the velocity-time graph in Q23, sketch a possible acceleration-time graph.
25. Describe the motion of the object for which the velocity-time graph has been constructed.

26. For the motion described by the velocity-time graph in Q25, sketch a possible acceleration-time graph.
27. Describe the motion of the object for which the velocity-time graph has been constructed.

28. For the motion described by the velocity-time graph in Q27, sketch a possible acceleration-time graph.
29. Describe the motion of the object for which the velocity-time graph has been constructed.

30. For the motion described by the velocity-time graph in Q29, sketch a possible acceleration-time graph.
31. Describe the motion of the object for which the velocity-time graph has been constructed.

32. For the motion described by the velocity-time graph in Q31, sketch a possible acceleration-time graph.
33. Describe the motion of the object for which the acceleration-time graph has been constructed.

34. For the motion described by the acceleration-time graph in Q33, sketch:
(a) a possible velocity-time graph and
(b) a possible distance-time graph.
35. For the velocity-time graphs, which show the motion of two vehicles, \mathbf{A} and \mathbf{B}, state which vehicle:
(a) has the greater acceleration,
(b) reaches the higher speed and
(c) covers more distance.

36. In Q35, is the acceleration of each vehicle uniform or non-uniform?
37. Sketch a possible velocity-time graph for an object moving with a uniform negative acceleration.
38. Describe the motion of the vehicle as shown in the speed-time graph below.

39. For the motion described by the speed-time graph in Q38, calculate
(a) the distance moved in the first 5 s ,
(b) the total distance moved,
(c) the average speed of the vehicle and
(d) the acceleration over the first 5 s .
40. Describe the motion of the vehicle as shown in the speed-time graph below.

41. For the motion described by the speed-time graph in Q40, calculate
(a) the distance moved in the first 5 s ,
(b) the distance moved in the first 10 s ,
(c) the total distance moved,
(d) the average speed of the vehicle and
(e) the deceleration over the last 5 s .
42. Describe the motion of the vehicle as shown in the speed-time graph below.

43. For the motion described by the speed-time graph in Q42, calculate
(a) the distance moved in the first 10 s ,
(b) the distance moved in the first 15 s ,
(c) the total distance moved,
(d) the average speed of the vehicle
(e) the smaller acceleration and
(f) the larger acceleration.
44. Which two criteria must be met for a line graph to indicate direct proportionality between two quantities?
45. Given a table of data with pairs of values for the kinetic energy and speed of a moving object, which graph would be drawn to show the mathematical relationship between the two quantities, by a straight line through the origin?
46. Given data consisting of pairs of velocity-time measurements for an object accelerating uniformly from rest, what graph could be constructed using the measurements which would be a straight line through the origin?
47. Given data consisting of pairs of distance-time measurements for an object accelerating uniformly from rest, what graph could be constructed using the measurements which would be a straight line through the origin?
48. Draw a speed-time graph for the motion of a car described thus:
"the car starts from rest and accelerates uniformly to a top speed of $15 \mathrm{~m} / \mathrm{sin} 5 \mathrm{~s}$. It remains at this speed for 10 s before decelerating uniformly to rest in 10 s ".
Calculate the acceleration during the first 5 s and the distance travelled over the whole journey.
49. Draw a speed-time graph for the motion of a car described thus:
"the car starts from rest and accelerates uniformly to a speed of $10 \mathrm{~m} / \mathrm{s}$ in 4 s . It stays at this speed for 6 seconds and then accelerates uniformly over 5 s to a top speed of $20 \mathrm{~m} / \mathrm{s}$. It travels at this speed for a further 5 s before decelerating uniformly to rest. The total motion lasts for 30 s ".

Calculate the value of the larger acceleration, the total distance moved and the average speed of the car.
50. For the velocity- time graph, calculate:
(a) the acceleration
(b) the distance moved

51. For the velocity- time graph, calculate:
(a) the acceleration
(b) the distance moved

52. For the velocity- time graph, calculate:
(a) the acceleration
(b) the distance moved

53. For the velocity- time graph, calculate:
(a) the acceleration
(b) the distance moved

54. For the velocity- time graph, calculate:
(a) the acceleration
(b) the distance moved

55. For the acceleration-time graph of a moving object, calculate:
(a) the change of velocity
(b) the final velocity if the acceleration started when the object was moving at $10 \mathrm{~m} / \mathrm{s}$

56. For the motion described by the acceleration-time graph in Q55, construct the corresponding velocity-time graph.

From the velocity-time graph, calculate the total distance moved.
57. For the acceleration-time graph of a moving object, calculate:
(a) the change of velocity
(b) the final velocity if the acceleration started when the object was at rest.

58. For the motion described by the acceleration-time graph in Q57, construct the corresponding velocity-time graph for the whole motion. From the velocity-time graph, calculate the total distance moved.
59. For the acceleration-time graph of a moving object, calculate:
(a) the change of velocity
(b) the final velocity if the acceleration started when the object was at rest.

60. For the motion described by the acceleration-time graph in Q59, construct the corresponding velocity-time graph for the whole motion. From the velocity-time graph, calculate the total distance moved.
61. For the acceleration-time graph of a moving object, calculate:
(a) the change of velocity
(b) the final velocity if the acceleration started when the object was moving at $20 \mathrm{~m} / \mathrm{s}$.

62. For the motion described by the acceleration-time graph in Q61, construct the corresponding velocity-time graph for the whole motion. From the velocity-time graph, calculate the total distance moved

Using Vectors

1. Explain, by using examples, the difference between a 'scalar' and a 'vector' quantity.
2. From the following list, identify the two vector quantities:
mass weight distance speed acceleration heat
3. From the following list, identify the two scalar quantities:
force velocity
speed
mass
acceleration
displacement
4. For each of the following displacement vectors, using a scale of 1 cm to each metre, state the size and direction of the displacement.
State the direction as a three figure bearing from North. (e.g. East is 090ㅇ).

(a)

(b)

(e)
(c)

(f)

5. Copy each of the following vector diagrams, in which two displacement vectors are shown added, and draw in the resultant vector.
Measure the resultant displacement (size and direction).
[Take the scale as 1 cm equivalent to 1 m]

(a)

(b)

(c)

(d)

(e)

(f)

6. On an orienteering course, a girl runs due north from point A to point B, a distance of 3 km . She then heads in an easterly direction for 4 km to point C.
(a) How far has the girl run from A to C ?
(b) What is the girl's displacement from point A when she reaches C ?
7. Draw a vector diagram to represent the following displacements which occur one after the other and measure the final displacement (size and direction):

3 km north, then $4 \mathbf{k m}$ east and finally 7 km south-west (2250)
8. The distance between the wickets on a cricket pitch is 22 yards. On one pitch, the wicket has a north-south orientation. A batsman scores three runs off one ball.
(a) What distance does he run?
(b) What is his final displacement if the wicket at which he batted is at the south end?
9. A sculler is rowing his boat at $3 \mathrm{~m} / \mathrm{s}$ through the water straight across a river which is flowing at $1 \mathrm{~m} / \mathrm{s}$. What is the boat's velocity relative to the ground?
10. A boat is being rowed at $1.5 \mathrm{~m} / \mathrm{s}$ east through the water in a river which is flowing north at $2.0 \mathrm{~m} / \mathrm{s}$. Calculate, by vector diagram, the resultant velocity of the boat relative to the ground.
11. A river is 24 m wide. A boat is moving through the water at 90° to the river's current at $3 \mathrm{~m} / \mathrm{s}$. The current is flowing at $2 \mathrm{~m} / \mathrm{s}$ west.

(a) How long will the boat take to reach the far bank of the river?
(b) What is the boat's velocity relative to the bank?
(c) What is the boat's displacement from point B when it reaches the far bank?
(d) Later, another driver takes the boat from point \mathbf{A} and reaches point \mathbf{B}. The boat still moves at $3 \mathrm{~m} / \mathrm{s}$ through the water. In what direction did this driver steer the boat and how long did it take to move from \mathbf{A} to \mathbf{B} ?
12. Criticise this vector diagram.

13. In each diagram, find the resultant of the two velocity vectors by vector addition.

State the magnitude and direction (relative to vector \mathbf{P}) of the resultant.
Use a scale of 1 cm to $1 \mathrm{~m} / \mathrm{s}$.
CAREFUL: remember that vectors must be added 'head to tail'.
(a)

(b)

(c)

14. Find the resultant of these groups of three vectors (magnitude and direction relative to vector \mathbf{P}).
Remember that the vectors must be added 'head to tail' in any order.
(a)

(c)
Q

(b)

Resolving Vectors

1. For each velocity vector, find its horizontal (x) and vertical (y) components. For each component, calculate its magnitude and direction (that is, left or right, up or down). Do each calculation by vector diagram and by trigonometry.

Assume a scale of 1 cm to $1 \mathrm{~m} / \mathrm{s}$.

(d)

(b)

2. Find the values of:
(a) $\sin 30^{\circ}$
(b) $\sin 60^{\circ}$
(c) $\cos 30^{\circ}$
(d) $\cos 60^{\circ}$
(e) $\sin 0^{\circ}$
(f) $\cos 0^{\circ}$
(g) $10 \sin 30^{\circ}$
(h) $50 \cos 60^{\circ}$
(i) $60 \sin 45^{\circ}$
(j) $60 \cos 45^{\circ}$
3. A 2.0 kg trolley is being pulled along a horizontal surface by a string. The tension force in the string is 8.0 N but it makes an angle of 22° with the horizontal. There is a friction force of 2.0 N acting parallel to the surface, as shown below.

(a) Find the component of the pulling force parallel to the surface.
(b) What unbalanced force acts on the trolley?
(c) Calculate the acceleration of the trolley.
4. A heavy roller is being used to roll the grass on a bowling green. It is pushed in one direction across the green (A) and pulled in the other direction (B).

In which situation would the grass have the greater force pushing down on it as the roller passed over? Explain.
5. A 0.50 kg kite is held at rest in the air by a nylon cord. The tension in the cord is 5 newtons.

Where the cord meets the kite body, it makes an angle of 37° to the vertical.
(a) Calculate the vertical component of the cord's tension.
(b) What force is the air exerting vertically on the kite? Justify your answer. ['g' = $10 \mathrm{~N} / \mathrm{kg}$]
6. A footballer kicks a stationary ball. It leaves his foot at an angle of 30° to the pitch and with a speed of $18 \mathrm{~m} / \mathrm{s}$.
(a) What is the ball's velocity (magnitude and direction) just after being kicked?
(b) What are:
(i) the horizontal component of the ball's velocity
(ii) its vertical component, just after being kicked?
7. In each example, using trigonometry or vector diagram, calculate the components of the weight vector:
(i) parallel to the slope
(ii) normal (at 90°) to the slope.
(a)

(b)

8. A girl throws a stone over the edge of a cliff. After a couple of seconds, the stone has a speed of $30 \mathrm{~m} / \mathrm{s}$ and is moving at an angle of 36.9° to the vertical..

(a) Calculate: (i) the horizontal component
(ii) the vertical component of the stone's velocity at that point.
(b) The horizontal component of the stone's velocity stays the same but its vertical component increases with time.
How would the direction of the stone's velocity change as time went on?
9. Which of these horizontal components goes with which force vector?
(a)

71 N
(b)
$\downarrow 200 \mathrm{~N}$

36 N
(c)

134 N
(d)

Projectiles

1. Which of these situations could be described as examples of projectile motion? Explain why the others are not projectiles.
(a) a plane flying at a steady height (b) a bullet moving along the barrel of a rifle
(c) a tennis ball in the air after being hit
(d) a hockey ball rolling in a straight line along the pitch
(e) a bullet after leaving the end of the rifle barrel
(f) a bird of prey diving to catch a rabbit (g) a satellite in orbit round the Earth
(h) a flying fish, after leaping out of the water
(i) an artillery shell, just after been fired from a cannon
(j) a bomb dropped from an aircraft
(k) a trolley rolling down a friction-compensated slope
(l) a fireworks rocket just after launch
[In all subsequent problems, unless otherwise stated, take ' g ' as $9.8 \mathrm{~m} / \mathrm{s}^{\mathbf{2}}$ and assume the effects of air resistance are negligible.]
2. Ignoring the effect of air resistance, in which direction does a projectile have a constant velocity whilst it is in motion above the ground?
3. Ignoring the effect of air resistance, in which direction does a projectile have a constant acceleration whilst it is in motion above the ground?
4. Close to the Earth's surface, and ignoring the effects of air resistance, what are the size and direction of a projectile's acceleration if its mass is:
(a) 1 kg
(b) 10 kg
(c) 500 g
(d) 3 tonnes?
5. The diagram shows a strobe 'photo' of a ball which has rolled off the edge of a table. The times between successive images of the ball are equal.

By making measurements on the diagram, show that the ball has a uniform horizontal velocity and a uniform vertical acceleration.
6. The diagram shows a strobe 'photo' of two balls, one black, one white, which have rolled off the edge of a table at the same instant but with different horizontal speeds. The times between successive images of the balls are equal. The 'photo' for the white ball is incomplete. Trace the position of the balls and grid lines and add the positions of the next three images of the white ball.

7. Ignoring the effect of air resistance on compact, heavy projectiles such as rocks, which shape of path (trajectory) do projectiles have:
diagonal straight line, parabola, arc of circle or section of an ellipse?
8.

A small ball bearing rolls off the edge of a horizontal table at $0.60 \mathrm{~m} / \mathrm{s}$. The table is 78.4 cm high.
(a) How long does it take to reach the floor?
(b) How far along the floor does it land from point \mathbf{X} which is directly underneath the table's edge?
9. A stone is kicked horizontally over the edge of an 80 metre high cliff. It hits the sea below 60 metres from the foot of the cliff. [Take ' g ' as $10 \mathrm{~m} / \mathrm{s}^{2}$]
(a) How long does the stone take to fall down to the sea?
(b) With what speed was it kicked off the edge?
(c) What is the stone's velocity (size and direction) just before hitting the sea?
10. During a cricket match, a fielder lobs the ball back to the bowler in a high, curving trajectory. What is the size and direction of the ball's acceleration at all points of its flight between being thrown and caught?
11. A cannonball is fired from ground level at a speed of $50 \mathrm{~m} / \mathrm{s}$. The initial direction of its trajectory is 45° to the horizontal.

(a) What are the initial horizontal and vertical components of the cannonball's velocity?
(b) What is the ball's vertical velocity when it reaches its highest point?
(c) What height does the ball reach?
(d) What is its acceleration (size and direction) at its highest point?
(e) Assuming level ground, how long does the cannonball take to come back down to ground level?
(f) What is the cannonball's horizontal range?
12. A stone is projected horizontally from a cliff top at $18 \mathrm{~m} / \mathrm{s}$. By constructing vector diagrams, find the magnitude and direction of the stone's velocity after the following time intervals, taking ' g ' as $10 \mathrm{~m} / \mathrm{s}^{2}$:
(a) 1.0 s
(b) 1.8 s
(c) 2.4 s
(d) 3.0 s
(e) 5.2 s
[Check your answers using trigonometry.]
13. A ball is kicked over the edge of a high cliff with a horizontal speed of $30 \mathrm{~m} / \mathrm{s}$.

Take ' g ' as $10 \mathrm{~m} / \mathrm{s}^{2}$.
(a) After how long does it make an angle of 45° with the horizontal?
(b) Calculate the ball's velocity (magnitude and direction) after 4 seconds.
(c) How far has the ball fallen vertically after 4 seconds?
(d) How far from the edge of the cliff is the ball after 4 seconds?
(e) If it takes 5.0 seconds to reach the bottom of the cliff, what is the cliff's height?
(f) What is the size and direction of the ball's acceleration just before hitting the foot of the cliff?
14. A missile is fired from a gun with an elevation of 30° to the horizontal. It reaches a height of 45 m . Find the speed with which it left the gun. [' g ' $=10 \mathrm{~m} / \mathrm{s}^{2}$]
15. A shell is fired from a cannon at a certain angle above the horizontal.

When it is at its greatest height, it just clears a 60 m tall building which is 80 m away from the cannon. Calculate the initial velocity of the shell, both size and direction.
16. (a) With what horizontal speed would a snooker ball need to be projected from the edge of a 78.4 cm high table to strike the floor 2.8 metres from a point directly under its point of projection?
(b) Calculate the ball's velocity (size and direction) just before striking the floor.
17. A golfer is practising his chipping from the very edge of a cliff. In one shot, he chips a ball at a speed of $30 \mathrm{~m} / \mathrm{s}$ and at an angle of 60° to the horizontal.

(a) What height above the top of the cliff does the ball reach?
(b) What is the ball's velocity after 4 s ?
(c) How high above the cliff is the ball after 4 s ?
(d) If the cliff is 112 m high, for how long is the ball in the air?
(e) What are the ball's velocity and acceleration at its highest point?
18. (a) At what angle to the horizontal was a ball kicked from the ground if it reached a greatest height of 7.2 m with a projected speed of $20 \mathrm{~m} / \mathrm{s}$?
(b) How long would the ball take to fall back to the ground from being kicked?
(c) With what speed would the ball hit the ground?
19. A piece of slate slides down a house roof and leaves the end at $6.0 \mathrm{~m} / \mathrm{s}$. The roof is at an angle of 30° to the horizontal. The slate becomes a projectile as soon as it loses contact with the roof.

(a) What are the size and direction of the slate's acceleration as it falls to the ground?
(b) If the slate takes 1.0 second to fall to the ground, how high is the edge of the roof above the ground?
(c) Calculate the size and direction of the slate's velocity just before hitting the ground.
20. A plane, flying horizontally at a height of 500 m above point \mathbf{X} on the ground, drops a package which hits the ground at point \mathbf{Y}. The distance from \mathbf{X} to \mathbf{Y} is 656.5 m .

At what speed was the plane flying when the package was released?
21. A cannonball's range depends on its speed and the angle at which it is fired.
(a) For a cannonball fired at a speed of $50 \mathrm{~m} / \mathrm{s}$, find the horizontal range (to 3 sig. figs.) when the cannon is elevated at these angles to the horizontal:
(i) 30°
(ii) 35°
(iii) 40°
(iv) 45°
(v) 50°
(vi) 55°
(b) From the pattern of your results, suggest which angle would yield the biggest horizontal range for any projection speed.
Confirm your choice by calculating the range at, $50 \mathrm{~m} / \mathrm{s}$, for a projected angle one degree above and one degree below your answer. [You will need to make the calculations correct to 5 significant figures.]

Unbalanced Force

In each example, state the size and direction of the unbalanced force acting on the object.
(a)

(b)

(c)

(d)

(e)

(f)

(h)

(j)

(I)

(m)
(k)
(i)

(g)

(n)

Newton's 2nd Law

In each of the following examples, use the formula F = ma to calculate the size and direction of the acceleration of the object, by firstly finding the unbalanced force acting on it.

Force = mass x acceleration

1. Use the formula force $=$ mass \mathbf{x} acceleration $(\mathbf{F}=\mathbf{m a})$ to calculate the missing entries in the table.

force (N)	mass (kg)	accel. ($\left.\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$
-	3	0
-	4	2
-	5	0.2
0	2	-
10	1	-
0.5	2	9.8
19.6	-	100
50	-	

2. What unbalanced force acts on a 70 kg mass if it accelerates at a rate of 1.6 metres per second per second?
3. What is the acceleration of a 10 kg mass which has no unbalanced force acting on it?
4. A 1200 kg vehicle is accelerating along a straight road at $3 \mathrm{~m} / \mathrm{s}^{2}$. What is the magnitude of the unbalanced force acting on it?
5. What unbalanced force acts on a mass of 3 kg which accelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$ on a horizontal surface if :
(a) there is no friction and
(b) if there is friction of 4 N ? (Careful!)
6. What is the size of the friction force if a 3 kg mass accelerates along a horizontal surface at $2.5 \mathrm{~m} / \mathrm{s}^{2}$ when acted on by a pulling force of 10 N ?
7. What is the unbalanced force acting on a car of mass 1800 kg being driven along a flat, horizontal road if the forward engine force is 5000 newtons and friction amounts to 500 newtons? What is its acceleration?
8. A bicycle is being ridden along a horizontal road by a "pedal" force of 400 N . Its speed is constant at $12 \mathrm{~m} / \mathrm{s}$. What is the total value of the frictional forces acting on the bike and its rider?
9. A 1500 kg car accelerates at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ along a horizontal road. If the frictional forces acting against the car's motion total 1000 N , what driving force is exerted on the road by the car's wheels?
10. Two men are pushing a broken down car, mass 1800 kg , along a horizontal road with a combined horizontal force of 1000 N . At one instant, the car accelerates at $0.25 \mathrm{~m} / \mathrm{s}^{2}$. What is the value of the frictional force acting on the car at this instant?
11. Two men, each exerting a horizontal push of 500 newtons, accelerate a broken-down car from rest at $0.3 \mathrm{~m} / \mathrm{s}^{2}$ along a flat, horizontal road. If the car's weight is 14000 newtons, calculate the total value of the frictional forces acting on the car. (Take ' g ' = $10 \mathrm{~N} / \mathrm{kg}$.)
12. The engines of a hovercraft, mass 12 tonnes, travelling in a straight line at a constant speed of $15 \mathrm{~m} / \mathrm{s}$, develop a forward thrust of 30 kN .

What is the total magnitude of the frictional forces acting on the vessel?
13. A 1400 kg car is travelling at $14 \mathrm{~m} / \mathrm{s}$ along a flat, straight section of road.

The driver allows the car to 'free-wheel' and finds that it takes 10 seconds to slow down to $11 \mathrm{~m} / \mathrm{s}$. Calculate:
(a) the size of the car's deceleration,
(b) the size of the force slowing the car.
14. A 1200 kg car accelerates uniformly from $14 \mathrm{~m} / \mathrm{s}$ to $22 \mathrm{~m} / \mathrm{s}$ in a time of 5 s along a straight, flat section of road.
(a) Calculate the car's acceleration and the unbalanced force causing it to accelerate.
(b) If the total frictional force acting on the car is 450 N , what is the size of the 'engine' force?
15. A mass of 2.5 kg is acted on by a 12 N force, with 7 N of friction acting in the opposite direction.

Calculate the unbalanced force on the mass and the magnitude of its acceleration.

16. A car driver puts her car in a low gear on a straight, level stretch of road and, without using the brakes, decelerates uniformly from $10 \mathrm{~m} / \mathrm{s}$ to $4 \mathrm{~m} / \mathrm{s}$ in 8 s .
(a) If the car's mass is 1200 kg , calculate its deceleration and unbalanced force on the car.
(b) Later, the driver is able to go down a gentle slope at a constant speed of $7 \mathrm{~m} / \mathrm{s}$ in the same gear without using the engine or the brakes.
What size is the force on the car down the slope likely to be?
17. What forward force would be needed to accelerate a 5 kg mass at $2 \mathrm{~m} / \mathrm{s}^{2}$ in a straight line along a level surface if the frictional force between the mass and the surface is 10 N ?
18. The drawing shows a 1400 kg car travelling along a flat, straight road.

Identify the engine force, the frictional force and the unbalanced force.
Calculate the car's acceleration with these forces acting on it.
19. The drawing shows a 1200 kg car travelling along a flat, straight road.

Identify the engine force, the frictional force and the unbalanced force.
Calculate the car's acceleration with these forces acting on it.
20. The car in the drawing is travelling along a straight, horizontal road.

The car's mass is 1200 kg and it is accelerating forward at $0.5 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the unbalanced force acting on the car and the size of ' \mathbf{f} ', the friction force.
21. The car in the drawing is moving at a steady velocity along a straight, horizontal stretch of road. Its mass is 1000 kg .

(a) What is the value of the friction force, \mathbf{f}, acting on the car?
(b) If the 'engine' force was now removed, what would be the initial size of the car's deceleration?
22. The car in the drawing is moving along a straight, horizontal stretch of road. Its mass is 1000 kg .

(a) What is the unbalanced force acting on the car?
(b) What can be stated about the car's motion?
(c) If the frictional forces stayed the same and the 'engine' force was increased to 1200 N, what would the car's motion now be?
23. A shopping trolley, loaded with items, has a total mass of 100 kg . It is being pushed by a man at a steady speed in a straight line at $0.5 \mathrm{~m} / \mathrm{s}$ with a horizontal force of 5 newtons.
(a) What is the size of the frictional force acting on the trolley?
(b) If the man stopped pushing the trolley, what would its motion become?
(c) Assuming the frictional force did not vary with speed, how long would the trolley take to stop on its own?
24. A ball of mass 200 grams rolls down a steep hill. Its acceleration is measured to be $4 \mathrm{~m} / \mathrm{s}^{2}$. What unbalanced force acts on the ball?
25. What forward force would be needed to accelerate a 2 kg mass at $3 \mathrm{~m} / \mathrm{s}^{2}$ in a straight line along a level surface if the frictional force between the mass and the surface is 2 N ?
26. What forward force would be needed to accelerate a 6 kg mass at $3 \mathrm{~m} / \mathrm{s}^{2}$ in a straight line along a level surface if the frictional force between the mass and the surface is 10 N ?
27. Use the formula force $=$ mass \mathbf{x} acceleration to calculate the missing entries in the table.

force (N)	mass (kg)	accel. (m/s ${ }^{2}$)
-	2×10^{3}	10
-	3×10^{4}	0.10
-	10^{6}	0.001
3×10^{4}	2×10^{3}	-
1.6×10^{3}	2.0	-
2.4×10^{3}	4.8×10^{4}	-
0.1	-	0.01
3.2×10^{-3}	-	10^{-4}

28. A 50 kg boy, who weighs 500 N , is standing in a lift which is accelerating upwards at a rate of $1 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is the size and direction of the unbalanced force on the boy?
(b) With what size of force does the lift floor push on his feet?
29. A man of weight 800 N is standing on scales in a lift moving at a constant velocity of $2 \mathrm{~m} / \mathrm{s}$ between floors. What do the scales read if the lift is moving (a) up (b) down?
30. Taking ' g ' as $10 \mathrm{~N} / \mathrm{kg}$, what thrust would be needed to accelerate a rocket of mass $500 \times 10^{3} \mathrm{~kg}$ vertically upwards at $2.5 \mathrm{~m} / \mathrm{s}^{2}$?
31. What unbalanced force acts on a 40 kg girl travelling downwards in a lift which is increasing its speed at the rate of $2.5 \mathrm{~m} / \mathrm{s}^{2}$?
32. A 70 kg man is in a lift accelerating upwards between floors at $2.5 \mathrm{~m} / \mathrm{s}^{2}$. How heavy does he feel and what is his actual weight?
33. A 90 kg man is standing on a set of scales in a moving lift. At an instant when the lift is moving down and getting faster at the rate of 3 metres per second per second, what would the scales read? (Take ' g ' as $10 \mathrm{~N} / \mathrm{kg}$).
34. A 40 kg girl, who weighs 400 N , is standing in a lift which is accelerating upwards at a rate of $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is the size and direction of the unbalanced force on the girl?
(b) With what size of force does the lift floor push up on her feet?
35. An 80 kg man, who weighs 800 N , is standing in a lift which is accelerating downwards at a rate of $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is the size and direction of the unbalanced force on the man?
(b) With what size of force does the lift floor push up on his feet?
36. A 60 kg woman, who weighs 600 N , is standing in a lift which is accelerating downwards at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is the size and direction of the unbalanced force on the woman?
(b) With what size of force does the lift floor push up on her feet?
37. An 80 kg man, who weighs 800 N , is standing in a lift. The lift floor is pushing upwards on his feet with a force of 880 N .
(a) What is the size and direction of the unbalanced force on the man?
(b) What is the acceleration of the lift (size and direction)?
38. A 60 kg woman, who weighs 600 N , is standing in a lift. The lift floor is pushing upwards on her feet with a force of 540 N .
(a) What is the size and direction of the unbalanced force on the woman?
(b) What is the acceleration of the lift (size and direction)?
39. A 1 kg mass is hanging from a newton balance in an upward moving lift. What is the lift's motion when the balance reads 10.3 N ? (' g ' = $10 \mathrm{~N} / \mathrm{kg}$)
40. An 80 kg man, who weighs 800 N , is standing in a lift. The lift floor is pushing upwards on his feet with a force of 800 N .
(a) What is the size and direction of the unbalanced force on the man?
(b) What is the motion of the lift?
41. A 60 kg boy, standing on a set of scales in an upward moving lift, appears to weigh 690 N . What is the actual weight of the boy and what is the motion of the lift?
42. A woman of mass 60 kg is in a lift which is moving down between floors. At one instant, the lift is accelerating down at $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
What is her apparent weight at that instant and her actual weight?
43. In the situation below, two blocks are in contact and on a frictionless surface. Calculate:
(a) the acceleration of the blocks.
(b) the force pushing the smaller block.

44. In the situation below, two blocks are in contact and on a frictionless surface. Calculate:
(a) the acceleration of the blocks.
(b) the unbalanced force pushing the larger block.

45.

Two masses are pushed along a smooth, horizontal surface by a force of 27 N . There is no friction. Calculate the acceleration of the masses and the force pushing the $\mathbf{6} \mathbf{~ k g}$ mass.

46. Two masses, joined by a light cord, are being pulled along a frictionless surface, as shown, by a 30 N force. Calculate:
(a) the acceleration of the masses,
(b) the unbalanced force on the $\mathbf{3} \mathbf{~ k g}$ mass,
(c) the tension, \mathbf{T}, in the cord.

47. Two masses, joined by a light cord, are being pulled along a surface, as shown, by a $27 \mathbf{N}$ force. There is $6 \mathbf{N}$ of friction between the larger mass and the surface and $3 \mathbf{N}$ between the smaller mass and the surface. Calculate:
(a) the acceleration of the masses,
(b) the unbalanced force on the $4 \mathbf{k g}$ mass,
(c) the unbalanced force on the $\mathbf{8} \mathbf{~ k g}$ mass and
(d) the tension, \mathbf{T}, in the cord.

48. Two blocks are pushed along a frictionless surface, as shown, by a force of 6 N . Calculate:
(a) the acceleration of the blocks,
(b) the unbalanced force on the $\mathbf{4} \mathbf{~ k g}$ block and
(c) the force exerted by the 8 kg block on the 4 kg block.

49. A 250 tonne rocket accelerates vertically upwards from the launchpad on Earth at $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is the unbalanced force on the rocket?
(b) What thrust is developed by the rocket's engines in meganewtons (MN)?
('g' for Earth $=10 \mathrm{~N} / \mathrm{kg} ; 1$ tonne $=1000 \mathrm{~kg}$)
50. A small spacecraft of mass 2.3 tonne is designed to lift off from the Moon's surface at $3 \mathrm{~m} / \mathrm{s}^{2}$ vertically upwards.
(a) What is the unbalanced force on the spacecraft?
(b) What thrust is developed by its engines?
('g' for Moon = 1.6 N/kg; 1 tonne $=1000 \mathrm{~kg}$)
51. What is the mass (in tonnes) of a rocket taking off from the Earth's surface if a thrust of $3.2 \times 10^{5} \mathrm{~N}$ from the engines produces an upward acceleration of $0.67 \mathrm{~m} / \mathrm{s}^{2}$?
('g' for Earth $=10 \mathrm{~N} / \mathrm{kg} ; 1$ tonne $=1000 \mathrm{~kg}$)
52. A fireworks rocket with a mass of 40 g is set off. Immediately after lift off, its acceleration is measured at $25 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the thrust developed by the rocket at lift off. (Assume the effect of air resistance is negligible).
53. What minimum rocket thrust would be required to enable a 4510 kg spacecraft to lift off from the surface of Mars with a vertical acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$?
(Answer to two significant figures). Take ' g ' for Mars to be $3.7 \mathrm{~N} / \mathrm{kg}$.

Force Diagrams

1. Name the force marked '?'

How does its size compare to the trolley's weight?

3. The helium balloon is tethered to a ring on the ground by a very light cord. Copy the diagram and use arrows to show the forces acting on:
(a) the ring
(b) the balloon
2. The plane is in level flight.

Name the force marked '?'
How does its size compare to the plane's weight?

4. The mine is stationary - the forces acting on it are balanced.
(a) Which force is missing?
(b) What length should its vector be and in what direction should it point?

5. The gondola is not moving. Identify the other force on the boat and state how its magnitude and direction compare with the boat's weight.
6. The mass is hanging from a ring fixed to the ceiling.
Copy the diagram and indicate, with arrows, the forces acting on:
(a) the ring
(b) the mass

weig
7.

The box is hanging at rest.
Draw vector diagrams to show:
8. A mass is at rest on a horizontal surface. Its weight is shown as the vector 'W'.
Copy the diagram and add a vector to show and name the other force acting on the mass.
10.

The picture frame is held at rest on a wall by two cords attached to a nail.
(a) Identify the forces acting on the nail.
(b) Which forces balance the weight of the frame?
(a) the three forces acting on the knot,
(b) the two forces acting on the box.
9. The pendulum bob, weight \mathbf{W}, is at rest. A horizontal force F pulls it to one side. The forces acting on it are in equilibrium. Which force is missing from the diagram? Copy the diagram and draw in the missing force, showing its correct size.

Blocks on surfaces (1)

In the following examples, the masses are being pulled along a frictionless, horizontal surface by forces acting on light cords. In each case, calculate the acceleration of the masses and/or the tension(s) (\mathbf{T}) in the cord(s) or mass m of the block.

11.

Blocks on surfaces

In these examples, blocks are being pushed along a frictionless surface by the action of one or two forces. In each case, calculate the acceleration of the blocks and the unbalanced force acting on the shaded block.
1.

2.

3.

In these examples, the blocks are on a horizontal, frictionless surface. In each case, calculate the acceleration of the blocks and the force which one block exerts on the other.

7.

8.

In questions 9 and 10, calculate the mass of block A and the force block A exerts on the other block.

10. $\quad a=1 \mathrm{~m} / \mathrm{s}^{2}$

Blocks on surfaces

In these examples the blocks lie on surfaces which are not frictionless. There isfriction between each block and the surface of 1 newton for each kilogram of mass.

Calculate the acceleration of the blocks and the tension in the cords joining the blocks.

In these examples the blocks lie on surfaces which are not frictionless. There isfriction between each block and the surface of 1 newton for each kilogram of mass.
Calculate the acceleration of the blocks and the unbalanced force acting on the shadedblock.
5.

6.

7.

8.

9.

Hanging masses

In each example, calculate the tension in each cord which is supporting a hanging mass.
Take the gravitational field strength ' g ' as $10 \mathrm{~N} / \mathrm{kg}$ and assume that the weights of the cords are negligible.

2.

3.

4.

5.

6.

7.

8.

9.

Masses on surfaces

In these examples, the blocks lie on frictionless slopes.
Measure the angle of each slope and calculate the block's acceleration down the slope.
Answer to twosignificant figures. [Take the gravitational field strength, ' g ', to be $10 / \mathrm{kg}$.]
1.

2.

3.

4.

In these examples, there is friction between the blocks and the slopes as indicated. Measure the angle of each slope and calculate the block's acceleration down the slope. Answer to two significant figures.
5.

6.

7.

8.

y. $A<\mathrm{kg}$ mass is released trom rest on a trictionless siope.

(a) What would the angle ' θ ' of the slope be if the acceleration of the mass was:
(i) $5 \mathrm{~m} / \mathrm{s}^{2}$
(ii) $6.7 \mathrm{~m} / \mathrm{s}^{2}$
(iii) $3.1 \mathrm{~m} / \mathrm{s}^{2}$?
(b) Would there be any difference to the answers to part (a) if the block's mass was 4 kg ?

In these examples, a block, lying on a frictionless, horizontal surface, is pulled along by a weighted cord. The pulley wheel has no friction. In each case, calculate the acceleration of the block, the unbalanced force acting on it and the tension in the cord.

In these examples, a block is pulled along a rough surface by a weighted cord. The friction between the block and the surface is shown in the diagrams. The pulley wheel has no friction. In each case, calculate the acceleration of the block, the unbalanced force acting on it and the tension in the cord.
12.

13.

Action and Reaction

1. Complete this statement of Newton's 3rd Law of Motion: "to every action, there is an \qquad and \qquad reaction"
2. When two bodies collide, how does the size of the change of momentum of one body compare with the size of the change of momentum of the other body?
3. In answer to a test question about action and reaction between an apple and the Earth, a boy wrote: "the reaction to the force of the Earth on the apple is the force of the apple on the table."

What is wrong with the boy's answer?

4. In a rocket engine, what is the reaction to the force exerted on the exhaust gases by the rocket?
5. What is the reaction force to the weight of an apple?
6. What is the reaction to the force of a horse pulling a cart along a farm track?
7. What is the reaction to the force of a footballer's foot on the ball?
8. What is the reaction force to the gravitational force exerted by the Earth on the Moon?
9. In a water rocket, what is the reaction to the force exerted by the compressed air on the water?
10. At one point on a car's journey, one of the rear drive wheels is pushing on the road surface with a force of 800 N . In comparison to the car's motion, in what direction does the tyre push on the road surface and what is the reaction to this force?
11. On the point of service, a tennis player's racquet strikes the ball with a peak force of 250 N .

What force does the ball exert on the racquet at that instant and in what direction is the force?
12. A fireworks rocket explodes into two parts of ratio $2: 1$ in mass.

The larger piece experiences a force of 25 N straight up due to the explosion.
What are the size and direction of the force on the smaller piece due to the explosion?

Momentum = mass x velocity

1. Use the formula momentum = mass x velocity $(P=m v)$ to calculate the value of the missing quantities in the table.

mom. (kgm/s)	mass (kg)	vel. (m/s)
-	2	10
-	0.5	100
1000	-	50
3×10^{4}	-	20
0.6	0.5	-
250		-

Remember: when calculating energy, speeds and velocities need to be be in \mathbf{m} / \mathbf{s}.
2. Calculate the momentum of a 1400 kg car moving at $10 \mathrm{~m} / \mathrm{s}$.
3. What is the size of the momentum of a 600 gram stone moving at $20 \mathrm{~m} / \mathrm{s}$?
4. What is meant by an 'elastic' collision between two objects?
5. Calculate the momentum of a 20000 tonne ship moving through the water at a speed of $12 \mathrm{~m} / \mathrm{s}$. [1 tonne $=1000 \mathrm{~kg}$]
6. An 80 kg sprinter is running at $10 \mathrm{~m} / \mathrm{s}$ in a race. What is the value of his momentum?
7. On the Moon, where the gravitational field strength is $1.6 \mathrm{~N} / \mathrm{kg}$, a 500 kg vehicle is travelling up a 10° slope at $4 \mathrm{~m} / \mathrm{s}$. What is the size of the vehicle's momentum?
8. A car is travelling in a straight line at $15 \mathrm{~m} / \mathrm{s}$. It has $18000 \mathrm{kgm} / \mathrm{s}$ of momentum. What is the car's mass?
9. A girl on a 10 kg bicycle is riding it at a speed if $6 \mathrm{~m} / \mathrm{s}$. If the momentum of the girl and bicycle is $360 \mathrm{kgm} / \mathrm{s}$, what is the mass of the girl?
10. At what speed is a 20 gram air rifle pellet moving if it has momentum of $1.6 \mathrm{kgm} / \mathrm{s}$?
11. Two cars are travelling in the same direction. One has a mass of 1000 kg and is moving at $10 \mathrm{~m} / \mathrm{s}$, the other's mass is 1200 kg and it is moving at $15 \mathrm{~m} / \mathrm{s}$.
What is the total momentum of the cars?
12. Two cars are moving in opposite directions. One is 1200 kg and is moving at $10 \mathrm{~m} / \mathrm{s}$, the other is 1000 kg and is moving at $12 \mathrm{~m} / \mathrm{s}$.
What is the total momentum of the cars?
13. A 3 kg trolley moving at $40 \mathrm{~cm} / \mathrm{s}$ collides with and joins to a stationary trolley of mass 2 kg on a horizontal, frictionless surface. Calculate the speed at which the trolleys move after the collision and the loss of kinetic energy.
14. Two trolleys, each of mass 2 kg , collide and stick together on a smooth, horizontal surface. One trolley is at rest before the collision.

Calculate the combined velocity (size and direction) of the trolleys after the collision.
15. Two trolleys are moving in the same direction along a smooth surface.

One is moving faster and catches up on the other. The trolleys collide and stick together.

Calculate the combined velocity (size and direction) of the trolleys after the collision.
16. Two trolleys are moving in opposite directions along a smooth surface.

The trolleys collide and stick together.

(a) What is the total momentum of the trolleys before and after the collision?
(b) What is the trolleys' combined velocity after the collision?
17. A car of mass 1500 kg , travelling at $15 \mathrm{~m} / \mathrm{s}$, collides 'head on' with a second car, mass 1000 kg , which has a speed of $16.5 \mathrm{~m} / \mathrm{s}$ in the opposite direction. Find the speed and direction of the cars immediately after the collision, assuming that they remain locked together.
18. Two trolleys are at rest and in contact on a smooth, level surface. A coiled spring in one trolley is released so that they 'explode' apart. The lighter trolley moves off at $50 \mathrm{~cm} / \mathrm{s}$.
Find the speed of the other trolley and the minimum
 energy which was stored in the coiled spring before release.
19. Two trolleys are moving in opposite directions at the same speed along a smooth surface. The trolleys collide and stick together.

(a) What is the total momentum of the trolleys before and after the collision?
(b) What is the trolleys' combined velocity after the collision?
20. Two trolleys of equal mass are moving in opposite directions along a smooth surface. The trolleys collide and stick together.
$50 \mathrm{~cm} / \mathrm{s}$

$60 \mathrm{~cm} / \mathrm{s}$

(a) What is the total momentum of the trolleys before and after the collision?
(b) What is the trolleys' combined velocity after the collision?
21. Two cars, each of mass 1000 kg , collide head on on a level road.

The wreckage stays as one mass after the collision.

Calculate: (a) the velocity of the wreckage immediately after the collision and (b) the loss of kinetic energy.
22. Two trolleys have just 'exploded' apart on a smooth, horizontal surface, as shown.

What was their combined velocity just before the event?

23. Two trolleys, initially at rest and touching on a smooth, level surface, explode apart when a spring loaded pole is released on one trolley.

The 5 kg trolley moves off at $60 \mathrm{~cm} / \mathrm{s}$.
(a) What is the value of the total momentum of the trolleys after they have exploded apart?
(b) Calculate the velocity of the 3 kg trolley.
24. A 2 kg trolley is rolling at $30 \mathrm{~cm} / \mathrm{s}$ along a smooth, level surface when a 3 kg mass, which is not moving horizontally, is lowered onto it.

The trolley continues to move at a slower speed with its extra load.
Calculate: (a) its new speed and (b) the loss of kinetic energy.
25. A model rocket of mass 3 kg is rising vertically through the air at $20 \mathrm{~m} / \mathrm{s}$ when it explodes into two parts. One part, 1 kg in mass, moves vertically upwards at a speed of $30 \mathrm{~m} / \mathrm{s}$ immediately after the explosion.

What is the speed and direction of the other piece immediately after the explosion?
26. If, after exploding apart on a level surface, a 2 kg trolley moves to the right at $30 \mathrm{~cm} / \mathrm{s}$ and a 3 kg trolley moves to the left at $10 \mathrm{~cm} / \mathrm{s}$, calculate the size and direction of the combined trolleys' velocity before the explosion.
27. Two trolleys are on a level surface. One, of mass 2 kg , is moving at $3 \mathrm{~m} / \mathrm{s}$ towards the other, a 3 kg trolley, which is at rest.

The trolleys collide elastically and, as a result, the 3 kg trolley moves off at $2.4 \mathrm{~m} / \mathrm{s}$. Calculate the speed and direction of the 2 kg trolley after the collision and confirm that the collision was completely elastic.
28. Two trolleys are on a level surface. One, of mass 4 kg , is moving at $3 \mathrm{~m} / \mathrm{s}$ towards the other, a 2 kg trolley which is at rest.

The trolleys collide elastically and, as a result, the 2 kg trolley moves off at $4 \mathrm{~m} / \mathrm{s}$. Calculate the speed and direction of the 4 kg trolley after the collision and confirm that the collision was completely elastic.
29. Two trolleys, each of mass 2 kg , are on a level surface and moving towards each other.

The trolleys collide elastically and, as a result, the darker trolley moves off at $3 \mathrm{~m} / \mathrm{s}$. Calculate the speed and direction of the other trolley after the collision and confirm that the collision was completely elastic.
30. A 2 kg trolley is rolling at $3 \mathrm{~m} / \mathrm{s}$ along a smooth, level surface when a box of mass ' m ', which is not moving horizontally, is dropped onto it.

The trolley and box continue to move at the slower speed of $1 \mathrm{~m} / \mathrm{s}$.
Calculate: (a) the value of the box mass ' m ' and (b) the loss of kinetic energy.
31. A 1600 kg car, travelling at $20 \mathrm{~m} / \mathrm{s}$, crashes into the back of a stationary vehicle of mass 2400 kg .
Calculate:
(a) the combined speed of the wreckage immediately after the collision,
(b) the loss of kinetic energy due to the impact, assuming that the cars lock together on impact.

Impulse

1. Show that the unbalanced force acting on a mass is equal to its rate of change of momentum; (that is: the change of momentum divided by time.)
2. What is the unit in which momentum is measured?
3. Is momentum a scalar or a vector quantity? Explain.
4. Complete this statement: "for a mass acted on by an unbalanced force, the impulse of the force is equal to the \qquad of \qquad of the momentum."
5. What is the unit in which impulse is measured?
6. Is the quantity 'impulse' a vector or scalar? Explain.
7. What is the difference between the quantities 'impulse' and 'force'?
8. Complete the table by calculating the magnitude of the missing quantities.

unbalanced force (N)	time (s)	impulse (Ns)	change of momentum (kgm/s)
1	1	-	-
10	1	-	-
1	10	-	-
20	0.5	-	-
0.5	0.2	-	-
500	0.001	2	-
-	0	1	-
-	0.001	-	50
-	0.02	0.2	-
40	-	5.0×10^{-4}	-
2.5	$5 \times 10-6$	10	-
-			

9. A mass is acted on by an unbalanced force of 10 newtons for 0.5 s .
(a) What is the impulse imparted to the mass?
(b) What is the change of momentum of the mass?
10. A force of 2 kN acts on an object for 4 milliseconds.
(a) What is the impulse on the object?
(b) What other measurement would be needed before the change of velocity of the object could be calculated?
11. A bullet becomes embedded in a sandbag which has a mass of 10 kg . The sandbag moves off at $0.5 \mathrm{~m} / \mathrm{s}$. What impulse was given to the sandbag?
12. A tennis ball has a mass of 40 g . It is struck from rest by a player who can serve at $50 \mathrm{~m} / \mathrm{s}$.
(a) What is the change of momentum of the ball?
(b) What impulse does the player's racquet impart to the ball?
13. A hockey ball's mass is 150 grams. It is travelling at $5 \mathrm{~m} / \mathrm{s}$ when a player hits it back in exactly the opposite direction with the same speed.
(a) What is the change of momentum of the hockey ball?
(b) What is the impulse on the ball?
(c) The force with which the stick hit the ball cannot be calculated. Why?
14. A tennis ball of mass 40 grams is struck by a racquet with an impulse of 1.5 Ns. If the impact with the racquet lasted for 1 ms , calculate the average force on the ball.
15. During a football match, the centre forward heads a cross towards the goal. In doing so, he changes the momentum of the ball by $9 \mathrm{kgm} / \mathrm{s}$.
(a) Calculate the change of velocity of the ball if its mass is 300 g .
(b) If the impact between the ball and the player's head lasted for 20 ms , what was the average force exerted on the ball by the player?
16. Which quantity can be calculated from the area under a force-time graph?
17. Sketch the likely shape of the force-time graph for the force acting on a football by a player's foot during a free-kick.
18. The graphs record the unbalanced force acting on a mass for a time. In each case calculate:
(a) the impulse imparted to the mass,
(b) the change of velocity if the object's mass is 2 kg and
(c) the average force acting on the mass.

19. In each case, calculate the change of momentum (size and direction) of the object:
(a) A mass of 2 kg moving to the right at $1.0 \mathrm{~m} / \mathrm{s}$ and given an impulse which causes it to move to the left at $2.0 \mathrm{~m} / \mathrm{s}$.
(b) An object with an initial momentum of $-4.0 \mathrm{kgm} / \mathrm{s}$ and a final momentum of $+5.0 \mathrm{kgm} / \mathrm{s}$.

Weight and Mass

1. Use the formulae force $=$ mass \mathbf{x} acceleration $(F=m a)$ or weight = mass \mathbf{x} gravitational field strength $(\mathbf{W}=\mathbf{m g})$ to calculate the missing entries in the table.

weight (N)	mass (kg)	${ }^{\prime} \mathbf{g}^{\prime}(\mathbf{N} / \mathbf{k g})$
-	2.0	10
-	4.5	10
-	3.0	1.6
330	-	10
784	-	9.8
480	-	1.6
74	0.5	-

2. Calculate the weight of these masses which are at the Earth's surface, taking the gravitational field strength to be $10 \mathrm{~N} / \mathrm{kg}$:
(a) 1.5 kg
(b) 3.2 kg
(c) 500 g
(d) 2 tonne
(e) $3.2 \times 10^{5} \mathrm{~kg}$
(f) $10^{4} \mathrm{~kg}$
(g) 0.035 kg
(h) $2.6 \times 10^{-3} \mathrm{~kg}$
(i) 350 mg
3. What is the value of the gravitational field strength at the surface of a planet if a 2 kg mass weighs 52 newtons?
4. What is the gravitational field strength at the surface of a planet where an 80 kg woman would weigh 520 N ?
5. What is the value of the gravitational field strength near the surface of a planet if a 3 kg mass falls with an acceleration of $1.6 \mathrm{~m} / \mathrm{s}^{2}$?
6. At a certain height above the Earth's surface, the gravitational field strength is just $3 \mathrm{~N} / \mathrm{kg}$. At this height, what would be the gravitational acceleration of a falling object? (Ignore the effect of friction.)
7. The drawings show objects free-falling near the surface of various planets. For each, calculate the gravitational field strength of the planet.

8. An astronaut in her spacesuit has a mass of 90 kg before launch on Earth. What would be her mass and weight on the surface of the Moon where the gravitational field strength is $1.6 \mathrm{~N} / \mathrm{kg}$?
9. An astronaut has a weight of 833 N on the surface of the Earth where the gravitational field strength is $9.8 \mathrm{~N} / \mathrm{kg}$. What would be the astronaut's weight and mass on the surface of another planet where the gravitational field strength is just $4.0 \mathrm{~N} / \mathrm{kg}$?
10. An astronaut weighs 735 N on Earth where ' g ' is $9.8 \mathrm{~N} / \mathrm{kg}$.

What is her mass (a) on the Earth and (b) on the Moon where ' g ' is $1.6 \mathrm{~N} / \mathrm{kg}$?
11. What are the (a) mass and (b) weight of a man on the surface of the Earth, where ' g ' is $9.8 \mathrm{~N} / \mathrm{kg}$, if his mass on Mars, where ' g ' $=3.7 \mathrm{~N} / \mathrm{kg}$, is 80 kg ?
12. A girl weighs 539 newtons on Earth, where ' g ' is $9.8 \mathrm{~N} / \mathrm{kg}$.

What would be her mass and weight on a planet where the gravitational field strength at the surface is $14 \mathrm{~N} / \mathrm{kg}$?
13. In a geostationary orbit above the equator, a communications satellite, which has a mass of 300 kg , experiences a force of 69 N .
Calculate the Earth's gravitational field strength at this height.
14. In orbit around the Earth, astronauts on board the Shuttle float around inside the craft and appear to be 'weightless'. Are they weightless? Explain.
15. Weight is a force. Force is a vector and so it has a direction. In what direction does your own weight point in these situations:
(a) not moving
(b) moving sideways
(c) moving in a circle?
16. What is the actual weight of an 80 kg man in a lift which is:
(a) stationary
(b) moving upwards with a steady speed
(c) accelerating upwards at $1 \mathrm{~m} / \mathrm{s}^{2}$
(d) accelerating down at $2 \mathrm{~m} / \mathrm{s}^{2}$?
(Take ' g ' = $10 \mathrm{~N} / \mathrm{kg}$.) Explain your answers.
17. Who weighs more: a 10 kg child on Earth (' g ' $=9.8 \mathrm{~N} / \mathrm{kg}$) or a 60 kg woman on the Moon where ' g ' $=1.6 \mathrm{~N} / \mathrm{kg}$?
18. An astronaut lands on Mars and finds that his weight is only 333 newtons, whereas it would have been 900 newtons on Earth, where ' g ' $=10 \mathrm{~N} / \mathrm{kg}$.
Calculate: (a) his mass on Earth, (b) his mass on Mars and (c) the gravitational field strength on Mars.
19. A lifting machine applies an upward force of 92 N to lift a 20 kg box of rocks on the Moon where ' g ' = 1.6 N/kg.
Calculate the size and direction of the unbalanced force exerted on the box and its acceleration.
20. On Mars, where ' g ' is $3.7 \mathrm{~N} / \mathrm{kg}$, what mass does a rock have that weighs the same as a 10 kg rock on the Moon where ' g ' = 1.6 N/kg?

Work = force x distance

1. Use the formula 'work = force \mathbf{x} distance' to calculate the value of missing quantities in the table.

work (J)	force (N)	distance (m)
-	10	5
-	5000	3
200	40	-
3000	0.1	-
4×10^{5}	2×10^{3}	-
10000	-	10^{5}
9×10^{6}	-	10^{4}

Take ' g ' $=10 \mathrm{~N} / \mathrm{kg}$

2. How much work is done by a 20 N force which moves an object for a total distance of 50 metres in the direction of the force?
3. How much work is done by a force of 6 newtons when it moves a total distance of 7 metres in its own direction?
4. A boy does 72 J of work in dragging a 30 kg mass along a floor for 3 metres. What force does he apply? (Assume the force is parallel to the floor.)
5. How much work is done by a man on a bag of shopping of weight 300 newtons if he carries it a distance of 200 metres at a constant height?
6. How much work would be done in slowly lifting a 50 kg box from the floor to a table which is 80 cm high?
7. A man pushes his broken down car with a horizontal force of 600 newtons. How much work has he done when the car has moved 5 metres?
8. What word is missing from the following statement: the work done by a force is found by multiplying the force by the distance moved in the \qquad of the force?
9. A shopper pushes a trolley with a steady force of 50 N . How far has he moved the trolley if he has done 1000 J of work on it?
10. How high is a table if 480 J of work is done in lifting a 60 kg box from the floor to the table?
11. A weight lifter lifts a bar and weights through a height of 2.5 m . If he does 3000 J of work, what is the mass of the weights?
12. A caravan needs a towing force of 400 N at 30 m. p.h. How much work would a car engine need to do to tow the caravan at this speed along a level stretch of road for 5 km ?
13. A yacht needs a pushing force of 400 N to move through the water at a steady speed of 5 knots. How far has the yacht moved at this speed if the wind has done a total of 4 MJ of work on it?
14. What type of energy is produced when the force of friction acts between moving surfaces?
15. What type of energy is produced by a force which slowly lifts a weight through a certain height?
16. What type of energy is produced when an unbalanced force pushes an object in the direction of the force along a horizontal path?
17. What types of energy are produced when an unbalanced force pushes an object in the direction of the force up a steady, frictionless incline?
18. What type of energy is produced when a force pushes an object in the direction of the force at a steady speed up a frictionless incline?
19. How much work, in kilojoules, is done by a crane's motor in lifting a 3 tonne machine slowly through a height of 20 metres?
20. A 3 kg box is slowly lifted through a height of 1.5 metres and finishes 2.5 metres from where it started.

How much work must be done in moving the box?
21. The force of gravity pulls down on a 2 kg brick which has fallen from a tall chimney stack. How far has the brick fallen when gravity has done 100 J of work on it?
22. A girl carries a box of mass 4 kg along a level floor for a total distance of 5 metres at a constant height.
How much work does the girl do against the force of gravity? Explain.
23. Calculate the work done by an unbalanced force in accelerating a car of mass 2 tonnes from rest at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ in a straight line for 10 seconds.
24. A 20 g bullet, travelling at $400 \mathrm{~m} / \mathrm{s}$, strikes a sand bag and becomes embedded to a depth of 20 cm .
Calculate the average stopping force acting on the bullet.
(Hint: consider the work done by the stopping force.)

Kinetic Energy

1. Use the formula $E_{k}=\mathbf{1} / \mathbf{2} \mathbf{m v} \mathbf{2}$ to calculate the value of missing quantities in the table.

$\mathbf{E}_{\mathbf{k}}(\mathbf{J})$	$\mathbf{m}(\mathbf{k g})$	$\mathbf{v}(\mathbf{m} / \mathbf{s})$	
-	2	1	
-	1	2	
-	0.5	10	
-	2×10^{3}	0.1	
8	-	2	
125	-	5	
4×10^{4}	2	-10^{3}	
36	10	-	
500	1000	-	
5			

2. Calculate the kinetic energy, in kilojoules, of a 1400 kg car travelling at $15 \mathrm{~m} / \mathrm{s}$.
3. Calculate the kinetic energy of a mass of 2 kg moving with a speed of $3 \mathrm{~m} / \mathrm{s}$.
4. At what speed is a 250 g stone moving if its kinetic energy is 3.5 joules?
5. What is the mass of an object travelling at $8 \mathrm{~m} / \mathrm{s}$ which has 96 J of kinetic energy?
6. An air gun pellet has a mass of 20 g and is fired from the gun with a speed of $50 \mathrm{~m} / \mathrm{s}$. Calculate the kinetic energy of the pellet.
7. Complete the following statement by adding the missing words:
"The kinetic energy of a moving body is directly \qquad to the \qquad of its speed."
8. A car of mass 1200 kg slows down from a speed of $20 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$. How much kinetic energy does the car lose?
9. How fast is a 90 kg man running if his kinetic energy is 720 J ?
10. How fast was a 1400 kg car travelling if it lost 280 kJ of kinetic energy in coming to a stop?
11. What is the mass, in grams, of an air gun pellet which has 12.5 J of kinetic energy when fired at a speed of $50 \mathrm{~m} / \mathrm{s}$?
12. A car of mass 800 kg accelerates from a speed of $2 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$.

Calculate the kinetic energy gained by the car.
13. A 100 m runner has a mass of 80 kg .

Calculate his kinetic energy when running at his top speed of $10 \mathrm{~m} / \mathrm{s}$.
14. A 20000 tonne ship is moving through the water at $12 \mathrm{~m} / \mathrm{s}$.

Calculate its kinetic energy and express the answer in megajoules (MJ.)
(1 tonne $=1000 \mathrm{~kg}$.)
15. A car, travelling at a speed of $20 \mathrm{~m} / \mathrm{s}$, has 240 kJ of kinetic energy.

What is the car's mass?
16. A runner of mass 60 kg is moving with 1080 J of kinetic energy. At what speed is she running?
17. What is the speed of a 1100 kg car which is moving with kinetic energy of 55 kJ ?
18. What is the mass of a bullet fired from a rifle at $500 \mathrm{~m} / \mathrm{s}$ if it has 6.25 kJ of kinetic energy?
19. What happens to the amount of kinetic energy carried by a moving mass if its speed doubles?
20. The kinetic energy of a moving mass is 500 J .

What would it be if the speed of the mass doubled?
21. A 2 kg rock, falling from the top of a cliff on the Moon, gains speed at the rate of $1.6 \mathrm{~m} / \mathrm{s}$ every second. Calculate its kinetic energy after 3 s .
22. In slowing down by use of the brakes, a car's speed is reduced from $50 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$. If the brakes and other frictional forces acting on the car generate 1.04 MJ of heat due to the reduction in speed, find the value of the car's mass.
23. During its re-entry to the Earth's atmosphere, a spacecraft, of mass 2 tonnes, slows down from $1000 \mathrm{~m} / \mathrm{s}$ to $400 \mathrm{~m} / \mathrm{s}$.
How much kinetic energy is lost by the spacecraft? Answer in megajoules (MJ).
24. What is the mass of a woman who gains 360 J of kinetic energy in doubling her speed from $2 \mathrm{~m} / \mathrm{s}$ to $4 \mathrm{~m} / \mathrm{s}$?
25. A pupil had a table of data which showed how an object's kinetic energy depended on its speed.
He plotted a graph of 'kinetic energy against speed' and hoped that it would be a straight line passing through the origin.
It wasn't!
Sketch the graph he obtained and suggest what graph he should plot to give a straight line through the origin.
26. A 1000 kg car has 50 kJ of kinetic energy when travelling at a certain speed.
(a) What is the speed of the car?
(b) What would its kinetic energy become if its speed trebled?
(c) How much kinetic energy would a 1500 kg car have at the slower speed?

Potential Energy

1. Use the formula $\mathbf{E}_{\mathbf{p}}=\mathbf{m g h}$ to calculate the value of missing quantities in the table.

$\mathbf{E}_{\mathbf{p}}(\mathbf{J})$	$\mathbf{m}(\mathbf{k g})$	$\mathbf{g}(\mathbf{N} / \mathbf{k g})$	$\mathbf{h}(\mathbf{m})$
-	2	10	3
-	0.5	10	20
-	3×10^{4}	4	100
180	-	10	6
2×10^{6}	-	10	100
60000	300	-	20
4800	100	-	30
10^{6}	2000	10	-
3.7×10^{7}	4×10^{5}	-	25

2. A pupil with a mass of 50 kg runs from the playground to her class on the school's top floor which is 12 metres above the playground.
How much potential energy does the girl gain?
3. How much gravitational potential energy does a 60 kg boy lose when he walks down a flight of stairs which is 4.5 m high?
4. A weight-lifter raises a barbell of mass 20 kg and, in so doing, does 490 J of work. Through what height does he lift the barbell?
5. How much gravitational potential energy is lost by a rock of mass 3 kg falling to the foot of a 250 m cliff on the Moon where ' g ' is $1.6 \mathrm{~N} / \mathrm{kg}$?
6. A stone of mass 3 kg falls vertically from a cliff and reaches a speed of $40 \mathrm{~m} / \mathrm{s}$ just before hitting the ground. What was its potential energy before it fell, assuming that it fell from rest? (Ignore air resistance.)
7. One of the world's largest roller coasters has a vertical drop of 68.57 m . Calculate the potential energy lost by a 70 kg person in making the drop on the roller coaster. Answer in kilojoules (kJ).
8. The Eiffel Tower in Paris was the world's tallest building during the last century. It is 300.5 m high.
(a) How much potential energy would a stone of mass 2 kg lose if it fell from the top to the ground below?
(b) What type of energy would replace most of this lost potential energy?
9. Which of these loses more potential energy: a 3 kg rock falling through a height of 15 metres near the Earth's surface or a rock of three times the mass falling through double the height near the Moon's surface, where the gravitational field strength is $1.6 \mathrm{~N} / \mathrm{kg}$?
10. In a hydroelectric power station, how much potential energy, in megajoules (MJ) is lost by 100 tonnes of water flowing down through the pipes and falling a vertical distance of 200 metres?
11. A 2 kg box is lifted through a height of 1.5 metres and finishes 3.0 metres from where it started.

Calculate the gain in potential energy of the box.
12. Compared to ground level, how much potential energy does a 500 kg plane have when flying at a height of 3000 m ?
13. How high has a goalkeeper managed to kick a 450 g ball if it has a maximum potential energy of 67.5 joules compared to ground level?
14. On Mars, a personnel vehicle of mass 400 kg gains 7400 J of potential energy when it climbs a 5 m hill. Calculate the gravitational field strength of Mars.
15. A diver prepares to dive from the 7 metre board in a swimming pool.

What is his mass if he has lost 5.25 kJ of potential energy just before entering the water?
16. What is the mass of a woman who gains 3 kJ of potential energy in climbing 5 metre high stairs?
17.

How much potential energy would be gained by a man with a mass of 100 kg in climbing to the top of these stairs from the very bottom?
18. The gravitational field strength near the surface of the planet Mars is $3.7 \mathrm{~N} / \mathrm{kg}$. What is the least quantity of energy which a 1500 kg buggy's electric motor would have to supply to allow the buggy to climb up a 324 m hill? (Answer to 2 significant figures.)

Kinetic Energy to and from Potential Energy

1. A mass of 2 kg falls from rest through a height of 5 m .
(a) Calculate its speed just before hitting the ground.
(b) What would the speed be if the mass were just 1 kg ?
2. A footballer kicks a 300 g ball vertically upwards from a height of 1 m and it reaches a height of 6 m before it starts to fall again. Calculate:
(a) the potential energy gained by the ball,
(b) the kinetic energy given to it by the footballer and
(c) the speed at which it was kicked.
3. A large rock becomes dislodged from a cliff at a height of 80 m from the sea below. It falls freely down. What is its speed just before reaching the water?
4. A puck is sliding along a frictionless horizontal surface at $3 \mathrm{~m} / \mathrm{s}$ and begins to move up a slope.

Assuming that no energy is lost due to frictional forces, how high would the puck reach up the slope?
5.

A pendulum bob is at rest 20 cm above the lowest point of its swing. It is released and allowed to swing freely downwards.
(a) What would be its speed at the bottom of its swing?
(b) If no energy is lost due to frictional forces, how high would the bob reach at the other end of the swing?
6. A stone of mass 4 kg is dropped from a height of 3 m . If air friction can be ignored, calculate the kinetic energy of the stone just before hitting the ground.
7. A stone of mass 500 g is fired vertically upwards from a catapult with a speed of $20 \mathrm{~m} / \mathrm{s}$. Assuming that air friction can be neglected, how much potential energy has the stone gained just before it starts to fall back down?
8. A 1200 kg car's brakes fail at the top of a steep hill which is 20 metres high.

It rolls down to the foot of the hill, gaining speed. If it loses 45600 J as heat as it rolls down, calculate its speed at the bottom.
9. When a car is stopped by its brakes, into what kind of energy is its kinetic energy converted?
10. A high board diver executes a standing dive from the seven metre board. If no energy is lost due to friction, calculate his speed just before entering the water. (Assume the diver's centre of mass has fallen by 7 m .)
11. On the Moon, where the gravitational field strength is $1.6 \mathrm{~N} / \mathrm{kg}$, an object of mass 2 kg falls from the top of a building (this is the 23rd century!) which is 20 metres tall. Calculate:
(a) the kinetic energy of the object as it hits the Moon's surface
(b) its speed as it hits the surface.
12.

A pendulum bob on a 2 m string, at rest at its lowest point, is given a sharp push to start it moving at $3 \mathrm{~m} / \mathrm{s}$. Ignoring the effects of air friction, calculate the value of h, the highest point of its swing.

13. A 2 kg trolley, with very light wheels, moving along a horizontal surface at $5 \mathrm{~m} / \mathrm{s}$, runs up an increasingly steep slope and stops at a certain height.

(a) Assuming that it rolls without loss of energy due to friction, calculate how high it reaches up the slope.
(b) If the trolley did lose some energy because of friction, how would you expect the height reached to compare with your answer to (a)? Why?

Power = Energy \div time

1. Use the formula $\mathbf{P}=\mathbf{E}_{\mathbf{t}}$ to calculate the value of the missing quantities in the table.

power (W)	energy (J)	time (s)
-	1000	20
-	100	0.01
-	2×10^{4}	50
2000	-	5
10^{6}	-	200
600	36000	-
3×10^{3}	6	-

Where appropriate, take Earth's gravitational acceleration to be $10 \mathrm{~N} / \mathrm{kg}$.

2. Calculate the output power of an electric motor which can do 30 kJ of work in one minute.
3. How much energy would be used in ten minutes by an electric motor with an input power of 750 W ? Answer in kilojoules.
4. An electric motor raises a container of mass 120 kg on the Moon through a height of 4 m in a time of 6 s at a steady speed.
Calculate the output power of the motor. ($\mathrm{g}=1.6 \mathrm{~N} / \mathrm{kg}$.)
5. A machine raises a mass of 250 kg through a height of 3 m in a time of 5 s . Find the output power of the machine. (Take ' g ' as $10 \mathrm{~N} / \mathrm{kg}$.)
6. A boy's legs generate 400 watts of power when pedalling an exercise bike. At this rate, how long would he take to do 120 kJ of work on the pedals?
7. When moving at a steady speed of $10 \mathrm{~m} / \mathrm{s}$ along a horizontal road, a car needs a forward force of 600 newtons. What power is developed by its engine to do this?
8. A 50 kg girl ran up a flight of stairs in 5 s . The stairs were 4 m high. Calculate:
(a) the potential energy gained by the girl
(b) the power developed by her legs against the force of gravity.
9. A boy of mass 65 kg runs up a rough slope from \mathbf{A} to \mathbf{B} in 6.5 s .

What average power do the boy's legs develop in overcoming gravity?
10. A storage tank requires 15 MJ of heat to raise its water temperature to a certain value. Assuming that no heat escapes from the water, how long would a 5 kW immerser take to supply the heat? Answer in minutes.
11. A 30 watt immerser supplies heat to a beaker of water for 10 minutes. How much heat is supplied, in kilojoules?
12. A block of wood is pulled at a constant speed of $6 \mathrm{~m} / \mathrm{s}$ along a rough horizontal table by a pulling force of 12 N .
(a) What is the value of the friction force between the block and the table?
(b) How much heat is generated by the friction force in 5 seconds?
(c) What is the rate of heat production in joules per second (watts)?
13. Crane \mathbf{S} has a power output which can raise a load through a certain height in 20 seconds. Crane \mathbf{T} can raise double the load through the same height in 10 seconds. How do the cranes' power outputs compare?
14. A 5 kilowatt immerser supplies heat to a beaker of water for 30 minutes.

How much heat, in megajoules, is supplied in this time?
15. A 40 gram mouse takes 5 s to run 2.5 m up a curtain.

Calculate the average power developed by its legs.
16. A catapult projects a stone of mass 20 g at a speed of $20 \mathrm{~m} / \mathrm{s}$ in a time of 20 ms . Calculate the average power output of the catapult. ($1 \mathrm{~ms}=0.001 \mathrm{~s}$)
17. An electric motor has a power output of 300 W .

Through what height could it raise a 50 kg box in 5 s ?
18. Calculate the minimum power developed by a 60 kg girl's legs in running up a 12 metre high flight of stairs in 15 seconds.
19. What is the minimum time it would take a 60 kg boy to run up a 20 metre high flight of stairs if his legs can develop a power of 400 watts?
20. An electric motor has a power output of 400 W and can raise a certain mass through a height of 2 metres in 12 s . How long would the same motor take to raise the same mass through the same height on the Moon where the gravitational field strength is one-sixth that of Earth?
21. While walking along a level floor at $1 \mathrm{~m} / \mathrm{s}$, a 70 kg man raises a 100 N load through a height of 1 m in 4 s . What is the average power output of his arms?
22. A ship's crane lifts a 2 tonne crate from the bottom of a hold onto the deck, 20 metres above, in a time of 20 seconds. What is the output power of the crane's engine?
23. How much electric energy, in kiljoules, is consumed by a 60 watt light bulb when it is switched on for a total of 2 hours?
24. What is the power rating of a light bulb which uses 1.62 MJ of electricity when on for a total of 3 hours? ($1 \mathrm{MJ}=10^{6} \mathrm{~J}$)

Efficiency

1. Complete this formula for calculating the percentage efficiency of a machine, in terms of work, by identifying the missing words:
$?$
$?$$\quad$ work output $\times 100 \%$
2. Complete this formula for calculating the percentage efficiency of a machine, in terms of power, by identifying the missing words:
$\frac{\text { useful power ? }}{?} \times 100 \%$
3. What form of 'useless' energy is mainly produced by a machine such as an electric motor which makes it less than 100% efficient?
4. Is it possible for a real machine to be 100% efficient? Explain.
5. Why is it impossible for any device to be more than 100% efficient?
6. A machine uses 100 W of electric power in producing 60 W of mechanical power. What is its efficiency?
7. An electric motor uses 50 watts of power from a low voltage power supply and produces 35 watts of power in lifting a weight. Calculate its efficiency.
8. A filament light bulb is found to emit 80 joules of light energy for every 1000 joules of electricity used. What is its efficiency?
9. A machine is 60% efficient.

How much useful output work would it do if supplied with a total input of 500 J ?
10. An electric fan is 90% efficient at converting electrical energy into kinetic energy. How much kinetic energy would it produce if supplied with 800 J from a battery?
11. A toy steam engine burns solid paraffin to make heat which is used to boil water into steam. The steam operates a piston which turns the driving wheels.
(a) If 18 J of useful mechanical energy is produced when 300 J of chemical energy is extracted from the paraffin, calculate the efficiency of the steam engine.
(b) How many joules out of every hundred are wasted?
12. A 50 W electric motor is 90% efficient. How long could it run before 900 J of energy was wasted?
13. A diesel engine, which is 25% efficient, is generating electric power and is able to light three 100 W lamps at the same time. What is the input power from the diesel fuel?
14. A mains transformer has an input power of 2 kW and is 90% efficient.
(a) How much energy would wasted in 10 minutes?
(b) What form of energy would most of the wasted energy be?
15. A machine has an efficiency of 60%. If the useful power output is 150 W , what is the total input power?
16. An electric motor consumes 10 watts of electric power when lifting a weight with a pulley system. If the motor is 80% efficient, calculate how much potential energy would be gained by the weight in 5 s .
17. An electric motor uses 3 watts of electric power when lifting a weight. If the weight gains 10 joules of potential energy in 5 seconds,
(a) what is the useful output power of the motor and
(b) what is the motor's efficiency in carrying out the operation?
18. A car engine is 25% efficient at converting the chemical energy in the petrol into useful mechanical energy. How many joules of mechanical energy are produced when 600 joules of chemical energy have been used by the engine?
19. A model hydroelectric power station produces just enough electric power to light a 6 W lamp. If the model is found to be $\mathbf{8 0 \%}$ efficient at converting the potential energy of the water into electricity, what is the input power of the water running through the pipes?
20. A clockwork toy car's 'engine' works by using the potential energy stored in a wound-up spring to turn the driving wheels. A toy car's spring has 5 J of energy stored when fully wound up. When released at the foot of a hill, the car climbs up to a height of 1 m . If the car's mass is 0.2 kg , calculate:
(a) the potential energy gained by the car and
(b) the efficiency of its 'engine' in changing the spring's energy into useful energy. (Take 'g' = $10 \mathrm{~N} / \mathrm{kg}$.)
21. An electric motor draws 2 A from a 12 V supply. It can lift a weight so that the weight gains 54 J of potential energy in 3 s . Calculate:
(a) the input power of the motor,
(b) the useful output power of the motor and
(c) the efficiency of the motor.
22. A water pump, rated at 12 V ; 5 A raises 30 kg of water through a height of 2 m in a time of 15 seconds. Calculate the pump's efficiency.
(Assume the water has no kinetic energy on reaching the top and take ' g ' $=10 \mathrm{~N} / \mathrm{kg}$.)
23. A hydroelectric power station generates 44 MW of electric power from an input of 70 MW of water power.
Calculate the efficiency of the power station.
24. Experiment shows that, of 600 joules of electricity delivered to a filament lamp, 440 joules turns into heat energy.
Calculate the efficiency of the lamp at converting electric energy to light energy.
25. In lifting the 20 N weight by a height of 1 m with the pulley system, an effort force of 12 N is moved through 2 m .

Calculate:
(a) the work done in moving the effort,
(b) the potential energy gained by the weight and
(c) the efficiency of the pulley.

26. In lifting the 36 N weight by a height of 1 m with the pulley system, the effort force is moved through 2 m . The pulley has an efficiency of 90%.

Calculate:
(a) the potential energy gained by the weight and
(b) the size of the effort force.

27. An electric motor is used to raise a 2 kg mass at a speed of $10 \mathrm{~cm} / \mathrm{s}$.

The input power to the motor is found from the voltage of its supply (5.5 V) and the current drawn from the supply (0.48 A.)
Calculate the efficiency of the operation.
28. An experimental wave-power generator consisting of a line of 'nodding ducks' can change 50% of the waves' energy into electric power.

What is the input power from waves if 25 kW of electric power is generated?
29. A man cranks a hand-operated generator to power a heater, immersed in an insulated container of water. He does 60 kJ of work in a certain time and raises the temperature of 2 kg of water by $6 \mathrm{C}^{\circ}$ in that time. Ignoring heat loss from the water, calculate the efficiency of the generator.
(Use $E=c m \theta$ to calculate the heat delivered to the water and take 'c' to be $4200 \mathrm{~J} / \mathrm{kgCo}$.)

Electrostatics

1. Copy and complete the following statement. When a plastic rod is rubbed with a dry cloth, it acquires an electrostatic \qquad .
This charge is caused either by the plastic \qquad or \qquad electrons.
2. When a plastic rod is rubbed with a cloth and gains extra electrons, what kind of charge does it have? What kind of charge does the cloth acquire?
3. When a plastic rod is rubbed with a cloth and loses electrons, what kind of charge does it have? What kind of charge does the cloth acquire?
4. A polythene rod is rubbed with a cloth at one end and acquires a negative charge. It is hung from a thread and a second, charged, polythene rod is brought close to it.

(a) Describe what happens to the suspended rod.
(b) What would have happened if the rods had been made of another material and both charged positively.
(c) Complete this statement: "LIKE CHARGES \qquad ".
5. A negatively charged polythene rod is suspended by a thread and a positively charged acetate rod held close to it.

(a) Describe what happens to the polythene rod.
(b) Complete this statement: "UNLIKE CHARGES \qquad ".
6. A negatively charged rod is held close to two uncharged metal spheres on insulated stands (fig 1), while they are separated.(fig 2).

Copy each diagram and show the position of negative and positive charges on the spheres.

Charge $=$ current x time $(\mathbf{Q}=\mathrm{It})$

1. Use the formula charge $=$ current \mathbf{x} time to calculate the value of the missing quantities in the table.

Charge (C)	Current (A)	Time (s)
-	3	10
-	0.6	60
60	2	-
1200	0.5	-
100	-	25
3×10^{4}	-	6×10^{3}

2. A car headlamp bulb draws 2 A from the battery. How much charge flows through the bulb in 5 minutes?
3. How much charge flows through a lamp in 2 minutes if it carries a steady current of 0.3 amperes?
4. What current flows through a resistor if 1200 C of charge move through it in 5 minutes?
5. How long would a charge of 600 coulombs take to move round a circuit at a steady rate of $12 \mathrm{C} / \mathrm{s}$?
6. With a steady current of 5 coulombs per second, how long would it take to move 200 coulombs of charge through a resistor?
7. In an electric circuit, an ammeter, in series with a 2700Ω resistor, reads 4.5 mA . How many coulombs of charge pass through the resistor in a time of 5 minutes?
8. How long has a lamp been switched on if it draws 2.5 amps from its power supply and 75 coulombs of charge have passed through it?
9. In part of an electronic circuit, a capacitor is charged in 9.0 s by an average current of 5 mA . How much charge is delivered to the capacitor in this time?
10. Car batteries are rated in units called amp-hours. What quantity is measured by this unit?
11. A rechargeable battery is marked 1.2V1.2Ah. According to this rating, how much charge does the fully-charged battery store, in coulombs?
12. A car battery is rated at 40 Ah. In theory, how long does this suggest the battery could light a headlamp bulb which draws 2 A from the battery?
13. A capacitor is an electrical device which can store charge. A certain capacitor can store 0.06 C of charge. How long would it take to deliver this quantity of charge to the capacitor with a steady current of 5 mA ?
14. In charging a capacitor in an electronic timing circuit, a steady current of 12 mA is delivered for exactly 1 minute.
How much charge is delivered to the capacitor in that time?
15. What average current flows in charging a capacitor with 0.1 C of charge in exactly 40 s?
16. A low voltage heater draws a current of 3 amps from a 12 volt d.c. supply. Its resistance is 4Ω.
How much charge moves through the heater in 10 minutes?
17. In the circuit shown, the reading on the ammeter is 0.25 amps .
Resistor \mathbf{A} is double the resistance of resistor \mathbf{B}.
In 30 seconds, how much charge
flows through:
(a) resistor \mathbf{A}
(b) resistor \mathbf{B} ?

18. In the circuit shown, the reading on ammeter A_{1} is 0.5 A and the reading on ammeter A_{2} is 0.3 A .
(a) How much charge flows through each lamp in 20 seconds.
(b) How much charge leaves the positive end of the battery in 20 seconds?
(c) How much charge goes into the negative end of the battery in 20 seconds?

19. A typical lightning strike delivers a charge of 20 coulombs in 1 millisecond. Calculate the average current during the strike.
20. What is the steady current, in milliamps, flowing through a circuit if a total charge of 36 coulombs leaves the power supply in 2 minutes?
21. A rechargeable cell is designed to be charged at 120 mA for 16 hours. Calculate the total charge delivered to the cell in that time.
22. A certain current delivers 1000 coulombs of charge in a certain time. How much charge would be delivered by double the current in half the time?
23. What has happened to the size of the current in a circuit if the same quantity of charge moves through a circuit component in half the time?
24. In 50 seconds, 100 C of charge pass through a lamp in an electric circuit. A brighter lamp, in parallel with the first, draws a current from the supply which is one and a half times larger. How much charge moves through it in 50 s?

Potential difference $($ voltage $)=$ Energy \div Charge (V=E/Q)

Note: the terms 'potential difference' and 'voltage' have the same meaning.

1. Use the formula 'potential difference = energy \div charge' to calculate the value of the missing quantities in the table:

p.d. (V)	energy (J)	charge (C)
-	24	2
-	180	20
12	240	-
1.32×10^{5}	6.60×10^{8}	-
4.5	-	450
230	-	15

2. What one word may be used in place of the electrical term 'potential difference or p.d.'?
3. Complete this statement:
'the p.d. between two points in an electric circuit is the e \qquad
t \qquad in moving one unit of c \qquad between the points.'
4. What is the potential difference across a lamp if 120 joules of light and heat energy are released when 10 C of charge has passed through it?
5. What is the potential difference across a resistor if 125 J of heat is made when a current of 2.5 A flows through it for 2 s ?
6. How much energy is converted into heat when 2 coulombs of charge moves through a resistance across which there is a p.d. of 12 volts?
7. What is the p.d. across a lamp if 24 joules of electric energy are transferred to other forms when 8 coulombs of charge has passed through it?
8. A car headlamp lights up correctly if connected across a p.d. of 12 volts. How much energy is used by the lamp when 3 coulombs of charge have gone through its filament?
9. How much energy is transferred from chemical to electrical when 10 coulombs of charge pass through a cell of e.m.f. 1.5 volts?
10. A voltmeter, connected across a resistor in an electric circuit, reads 3 V . How much heat energy is made in the resistor when 50 coulombs of charge have moved through it?
11. How much energy is converted to heat when 2 millicoulombs of charge pass through a resistance across which there is a voltage of 9 volts?
12. A 6 volt lamp is operated at its rated value. How many joules of heat and light energy are produced when 3 coulombs of charge pass through the lamp?
13. How much charge flows through a resistance if 10 joules of energy is transferred from electricity to other forms and the p.d. across the resistor is 4 volts?
14. What is the more usual name for the unit 'joule per coulomb'?
15. What is the p.d. across a lamp if 4600 joules of electric energy are transferred to other forms when 20 coulombs of charge has passed through it?
16. A typical lightning strike delivers a charge of 20 C in 1 millisecond.

If the average p.d. between the cloud and the ground during the above lightning strike is 50 million volts, calculate the energy transferred by the strike.
17. When 3 coulombs of charge flows through a cell, 3.6 joules of chemical energy is converted to electrical energy. What is the e.m.f. of the cell?
18. How much energy is transferred from chemical to electrical when 20 coulombs of charge pass through a rechargeable cell of e.m.f. 1.2 volts?
19. An electron, which carries an electric charge of magnitude $1.6 \times 10^{-19} \mathrm{C}$, is accelerated from rest across a potential difference of 2000 volts.
Calculate the kinetic energy gained by the electron.
20. An aquarium heater works from the 230 V mains. How much charge has passed through its element if 13.8 kJ of heat has been added to the water in the aquarium?
21. What would be the reading on a voltmeter connected across a resistor if the resistor made 180 J of heat when 20 C of charge passed through it?
22. In the circuit shown, the reading on the voltmeter is 2.5 volts.
How much heat energy would be produced in resistor B when a charge of 10 coulombs had passed through it?

23. Find the kinetic energy gained by an object carrying a charge of 2 nanocoulombs accelerated across a gap by potential difference of 120 kilovolts.
24. Calculate the energy gained by an electron accelerated by a p.d. of $\mathbf{6 0} \mathbf{~ k V}$ in an X-ray machine. (Charge on the electron $=1.6 \times 10^{-19} \mathrm{C}$)
25. What speed is reached by an electron, accelerated from rest by a potential difference of 160 volts, assuming all the work done on the electron becomes kinetic energy? (Mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$)
26. What is the maximum speed reached by electrons accelerated from rest by a voltage of 2.6 kilovolts, assuming all the work done on the electron becomes kinetic energy? (Mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$)

Ohm's Law

1. Use the formula 'resistance $=$ potential difference \div current' or ' $\mathbf{R}=\mathbf{V} / \boldsymbol{\rho}$ ' (Ohm's Law) to calculate the missing entries in the table.

Resistance (Ω)	P.D. (V)	Current (A)
-	12	2
-	9	0.5
-	230	11.5
4	12	-
70	3.5	-
3300	12	0.1
500	-	0.46

2 A room light has a current of 0.43 amps flowing through it when working from the 230 volt mains. What is the lamp's filament resistance?
3. A car headlamp bulb has a filament resistance of 6Ω. If the car battery is 12 volts, how much current does the bulb take from the battery when lit?
4. The heater of a toilet hand drier uses 9 amps from the 230 volt mains. What is the resistance of the heater's element?
5. In part of an electric circuit, the potential difference across a 12Ω resistor is 16 V . What is the current through the resistor?
6. A current of 3.33 mA flows through a $2.7 \mathrm{k} \Omega$ resistor. Calculate the potential difference across the resistor.
7. Calculate the reading on the meter in each circuit.
(a)

(b)

(c)

8. Calculate the resistance of the filament of a torch bulb which is rated at 2.5 V 0.2 A .
9. How much current would flow through a $2 \mathrm{M} \Omega$ resistor when connected across a p.d. of 9 volts? Answer in microamps ($\mu \mathrm{A}$).
10. Why is the resistance of a lamp bigger when it is lit than when it is off?
11. A statement about Ohm's Law in a textbook was partly hidden.

What are the missing words?
"The \qquad flowing through a conductor is \qquad to the potential difference across the ends of the conductor if its
\qquad does not alter."
12. For a conductor at constant temperature, describe the graph which would result if the potential difference across its ends was plotted against the current flowing through it.
13. For a conductor, a graph of potential difference across its ends is plotted against current flowing through it.
What quantity can be found from the gradient of the graph at any point?
14. The graph shows how the potential difference (p.d.) across a conductor varied with the current through it.
Calculate the resistance of the conductor.

15. The graph shows how the potential difference (p.d.) across a conductor varies with the current through it.
How does the resistance of the conductor change as the current inceases?

16. In the circuit below, the voltmeter reads 1.2 V and the ammeter reads 50 mA .

Calculate the value of resistor \mathbf{X}.

$$
P=\operatorname{IV} \quad P=12 R \quad P=V 2 / R
$$

1. Use the formula power = current \mathbf{x} voltage to calculate the value of the missing quantities in the table:

power (W)	current (A)	voltage (V)
-	5	12
-	10	230
2.64×10^{6}	-	132000
1000	-	250
72	6	-
0.36	0.06	-

2. How much current does a 2 kW electric fire draw from the 230 V mains?
3. What is the power rating of a lamp which draws 0.26 A from the 230 V mains?
4. A torch bulb has 2.5 V 0.2 A stamped on it. What is its power rating?
5. What is the potential difference across a heater which develops power of 42 W when a current of 3.5 A flows through it?
6. A 50Ω resistor carries a current of 2 A . Calculate the power developed in it.
7. What is the resistance of a resistor which develops 1000 watts of power when 10 amps flows through it?
8. Calculate the power of a hair dryer element which is designed to operate from the 230 V mains and has an element of resistance 53Ω.
9. What electric power is used by a light bulb which has a filament resistance of 1323Ω and works on 230 V ?
10. The power of the heater element of a toilet hand dryer is 2100 W . It operates from the 230 V mains.
Calculate the current drawn from the mains.
11. What current is carried in the element of a 2.4 kW kettle connected to the 230 V mains?
12. What power is dissipated in a 48Ω resistor when 2 amps flows through it?
13. Calculate the power dissipated in a 60Ω resistance wire carrying a current of 4 amps.
14. What is the power rating of a 529Ω light bulb which operates from the 230 V a.c. mains?
15. Which quantity is calculated by the square of the p.d. across a resistor divided by the value of its resistance?
16. Calculate the 'on' resistance of a mains 60 watt lamp, taking the voltage as 230 V r.m.s.
17. Two 1 kW electric fire elements are normally wired in parallel to give a power output of 2 kW when connected to 230 V . If they were connected in series to 230 V , what would their power output be? (Assume their resistances are constant at all temperatures).
18. Calculate the power dissipated by an 80Ω resistor connected to a 240 V supply.
19. The mains electricity has been reduced from 240 V a.c. to 230 V a.c. Assuming that the resistance of the element of an electric fire does not change with temperature, calculate the percentage drop in the power output from the element.
20. What is the resistance of a toaster element that produces power of 300 watts when operated from 230 V a.c.?
21. Assuming its resistance is constant, by what factor does the power dissipated in a resistor increase if the p.d. across it doubles?
22. Which unit could be expressed otherwise as an 'ampere squared - ohm'?
23. A 10Ω resistor has a power rating of 1 watt.

Calculate the maximum current the resistor can carry.
24. In each of these circuits, calculate the power dissipated in the resistor:
(a)
(b)
(c)

25. An immersion heater is marked 230 volt; 1 kilowatt. How many joules of heat does it produce each second?
26. What is the highest power of appliance that should be connected to a plug which has a 3 amp fuse connected to a 230 volt supply?
27. An electric iron is marked 230 V 650 W . What is its normal operating current?
28. What is the resistance of the element of a kettle which is marked $2.2 \mathrm{~kW} ; 230 \mathrm{~V}$?
29. An electric can opener has a power rating of 35 W when operated from a 230 V power supply.
How much current does it draw from the supply, in $m A$?

Combinations of resistors

1 What is the combined resistance of these three resistors?

How are the resistors connected to each other?
2. What is the combined resistance of these three resistors?

3. The combined resistance of these resistors is $\mathbf{2 0} \Omega$.

What is the value of resistor X ?
4. A set of Xmas tree lamps consists of twenty lamps wired in series.

If the identical lamps each have a resistance of 24Ω, calculate the total resistance of the set.
5. What is the combined resistance of the two resistors connected as shown below.

How are the two resistors connected to each other?
6. Calculate the combined resistance of the two resistors, connected in parallel.

7. In each case, calculate the combined resistance of the two resistors, connected in parallel.
(a)
(b)
(c)

8. In each case, calculate the combined resistance of the three resistors, connected in parallel.
(a)
(b)
(c)

9. In each case, calculate the combined resistance between \mathbf{A} and \mathbf{B}.
(a)
(b)

10. In each case, calculate the combined resistance between \mathbf{A} and \mathbf{B}.
(a)
(b)

11. In each of these parallel resistor combinations, the combined resistance is $\mathbf{2} \boldsymbol{\Omega}$.

Calculate the value of resistor \mathbf{X} in each combination.
(a)

(b)
(c)

12. In each of these parallel resistor combinations, the combined resistance is $\mathbf{3} \boldsymbol{\Omega}$. Calculate the value of resistor \mathbf{X} in each combination.
(a)

(b)

(c)

13. In each of these parallel resistor combinations, the combined resistance is $\mathbf{3 \Omega}$. Calculate the value of resistor \mathbf{X} in each combination.
(a)

(b)

14. What is the total resistance of two 10Ω resistors connected to each other:
(a) in series
(b) in parallel?
15. Two resistors in parallel have an effective resistance of 20Ω.

One of the resistors is 30Ω. Calculate the value of the other.
16. How does the total resistance of any two resistances connected in parallel compare to the value of either of the individual resistances?
17. Two resistors connected in parallel, one of which is 10Ω, have a total resistance of 5Ω.

Calculate their total resistance when connected in series.
18. What is the effective resistance of a $2.5 \mathrm{k} \Omega$ resistor short-circuited by a length of thick conducting wire?

19. What is the effective resistance across:
(a) an open switch,

(b) a closed switch?

20. Three resistors connected in parallel have an effective resistance of 10Ω.

Two of them are each 40Ω.
What would be the total resistance of the three resistors if connected in series?
21. What value of resistor, connected in series to a 20Ω resistor, would create a total resistance of four times that produced if it was connected in parallel to the 20Ω resistor?
22. Three resistors, $\mathbf{1 0 \Omega}, \mathbf{1 0 \Omega}$ and $\mathbf{2 0 \Omega}$, are connected in parallel to each other. A high resistance voltmeter connected across the 20Ω resistor reads 3 V . What would the vlotmeter's reading be across each of the other resistors?
23. Sketch the arrangement of four resistors, values $1 \Omega, 1 \Omega, 3 \Omega$ and $\mathbf{6} \Omega$ which would create a total effective resistance of 1Ω.
24. What are the values of two resistors \mathbf{X} and \mathbf{Y} which, when connected in series, make a total resistance of 90Ω and, when in parallel, make a total resistance of 20Ω ?

25. What is the total resistance when two 2Ω resistors, in parallel, are themselves in series with another pair of parallel 2Ω resistors?

26. What two resistances, measuring 16Ω when connected in series, make a total resistance of $\mathbf{3 \Omega}$ when connected in parallel?
27. How would four resistors, ($2 \Omega, 3 \Omega, 6 \Omega$ and 10Ω) be connected to make a total resistance of 11Ω ?
28. Three resistors, values $10 \Omega, 15 \Omega$ and $\mathbf{3 0} \Omega$ are connected so as to make a total resistance of 20Ω. Sketch the arrangement of the resistors.

Circuit rules - current and voltage

1. Describe how an ammeter should be connected to measure the current through a circuit component and state what its ideal resistance would be.
2. Describe how a voltmeter should be connected to measure the potential difference (voltage) across a circuit component and state what its ideal resistance would be.
3. Copy and complete the circuit diagram to show how an ammeter should be connected to measure the current between resistors A and B.

4. Copy and complete the circuit diagram to show how a voltmeter should be connected to measure the potential difference across resistor A.

5. In each circuit, state the current at positions \mathbf{P} and \mathbf{Q}.

(a)

(b)

6. In each circuit, state the potential difference (voltage) across resistor \mathbf{R}.
(a)

(b)

7. In the circuit below, what are the readings on the ammeters $\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$ and the voltmeters $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$?
(The currents and voltages at several points in the circuit are given).

8. A boy is asked to measure the current through a low voltage lamp.

He sets up a circuit as shown and complains that the lamp is not working.
In fact, the lamp is working.
What mistake has the boy made and why has the lamp not lit up?

9. In the circuit below, what are the readings on the ammeters $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}$ and $\mathbf{A}_{\mathbf{3}}$ and the voltmeters $\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}$ and $\mathbf{V}_{\mathbf{3}}$?

10. The lamp does not light up.

Tests show that the lamp is not burst.
What mistake has been made in this circuit? Why does the lamp not light?

D.C. circuits

1. (a) In the circuit shown, what happens when the switch is closed?

(b) What would happen if lamp \mathbf{A} was to break?
(c) Are the lamps wired in series or parallel?
2. (a) In the circuit shown, what happens when the switch is closed?

(b) What would happen if lamp A was to break?
(c) Are the lamps wired in series or parallel?
3.

(a) In this circuit, how many lamps are lit if switch $\mathbf{S}_{\mathbf{1}}$ only is closed?
(b) How many lamps are lit if only switches $\mathbf{S}_{\mathbf{2}}$ and $\mathbf{S}_{\mathbf{3}}$ are closed?
(c) If all three switches are closed, which lamps are lit?
(d) If all the lamps are identical, which would light brightest if all three were lit?
4. What circuit components are represented by these symbols?
(a) \qquad
(b)

(c) $\underset{=}{\perp}$
(d)

(e)

5. The circuit below is for a simple fan heater.

(a) Which switch or switches would be closed if the motor was on but not the heat?
(b) Which switch or switches would be closed if the motor was to be on to blow hot air from the heater?
(c) Explain whether it is possible to have the heater on but not the motor?
6. The circuit below shows a simple electric heater with two heating elements \mathbf{A} and \mathbf{B}. The elements are identical. The circuit also contains a lamp.

(a) How are the lamp and heating elements wired - in series or parallel?
(b) Can either or both elements be on without the lamp?
(c) Which switches could be closed for half heating?
(d) Which switches must be closed for full heating?
(e) Could either or both of the elements be switched on if the lamp was broken?
7. The circuit below shows a lighting circuit which can be used to light the lamp from either of two switches; this is useful in a long hallway or for the top and bottom of a flight of stairs.

(a) With the switches in the positions shown, would the lamp be on or off?
(b) What would happen if the position of first one then the other switch was changed?
(c) What would happen if the position of either switch was now changed?
8. What circuit components are represented by these symbols?
(a)

(b)

(c)

(d)

(e)

9. In which of the circuits shown would the lamp light? (Assume both lamps are in working order). Explain.

(b)

10. In the circuit shown, a low voltage electric motor is in series with a resistor.

12V

With the switch open, as shown, the potential difference across the motor is 9 V . What would happen to the speed of the motor if the switch was now closed? Explain.
[In the questions which follow, use a ruler to draw connecting wires and make corners to be 90°.]

Use these circuit symbols where appropriate:

11. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a single cell in series with a lamp followed by a switch, with the lamp wired to the positive side of the cell.
12. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a 9 V battery in series with two lamps and a switch, with the switch between the two lamps.
13. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a single cell in series with a switch, connected to the negative side of the cell, followed by two lamps wired in parallel.
The switch should control both lamps.
14. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a 9 V battery connected to a switch, on its positive side, which controls two lamps wired in parallel. One of the two lamps has its own switch so that it can be switched on and off without the other lamp being lit.
15. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a 12 V power supply connected to two resistors in series.
The p.d. across one of the resistors is being measured by a voltmeter.
16. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a 12 V power supply connected to two resistors in series.
The current between the resistors is being measured with an ammeter.
17. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a 12 V battery supplying current to two resistors in parallel with a switch controlling the current through both resistors.
Ammeters are measuring the current through each resistor.
18. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a 20 V power supply in series with a single resistor followed by two resistors connected in parallel.
An ammeter measures the current drawn from the supply and a voltmeter measures the potential difference across the parallel resistors.
19. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a 6 V battery supplying current to a light emitting diode (LED) in series with a resistor.
The circuit is arranged so that the diode will conduct.
20. Draw a circuit diagram for the following circuit, using the usual circuit symbols:
a 230 V power supply in series with a motor and resistor. The resistor has a switch in parallel with it and a voltmeter measures the p.d. across the motor.
21. Draw a possible circuit diagram for the following situation, using the usual circuit symbols:
a motor and a heating element have to be wired in parallel to a 230 V power supply. The circuit must include two switches. One switch should allow the motor to be switched on without the heater; the other switch should allow the heater to be switched on only if the motor is also on.
22. Draw a possible circuit diagram for the following situation, using the usual circuit symbols:
a 12 V battery has to light two pairs of 12 V lamps.
The circuit must have two switches, connected so that one pair of lamps can be switched on only when the other pair is switched on. The circuit is protected by a fuse wired to the positive side of the battery.
23. Draw a possible circuit diagram for the following situation, using the usual circuit symbols:
a 12 V battery wired in series with a 12 V lamp and resistor. The circuit also has a switch, connected so that, when it is open, the lamp is dull and, when it is closed, the lamp is bright.
24. Draw a possible circuit diagram for the following situation, using the usual circuit symbols:
a power supply is connected to two lamps in series.
Two two-way switches are wired so that either switch is able to turn the lamp on or off.

General Circuit problems

1. By what name is the unit 'volt-ampere' better known?
2. By what name is the 'volt per amp' better known?
3. A lamp operating at its normal rating of 2.5 V 0.3 A is switched on for 5 minutes.

How much energy is used by the lamp during this time?
4. An old moving coil voltmeter has a resistance of $10 \mathrm{k} \Omega$.

How much current is passing through it when it reads 5 volts?
5. How would four resistors, $2 \Omega, 3 \Omega, 5 \Omega$ and 7.5Ω be connected to make a total resistance of $10 \boldsymbol{\Omega}$?
6. What value of resistance would be connected in parallel to a $2.4 \mathrm{k} \Omega$ resistor to make a total resistance of 800Ω ?
7. What is the approximate resistance of $\mathbf{2} \boldsymbol{\Omega}$ in parallel with $\mathbf{2} \mathbf{k} \boldsymbol{\Omega}$?
8. Three resistors, $11 \Omega, \mathbf{3 0} \Omega$ and $\mathbf{4 0} \Omega$ are connected in series with a 9.0 V battery.

What would a high resistance voltmeter read if connected across the $\mathbf{3 0} \boldsymbol{\Omega}$ resistor?
9. A hair drier has a heating element and a fan motor.

Should they be wired in series or parallel? How should the switches be wired?
10. A circuit has to be protected by a 10 A fuse but there are only two 5 A fuses available. How could they be connected to protect the circuit?
11. Calculate the current in a set of twenty 12 V 1.2 W Xmas tree lights wired to the 230 V mains.
12. The p.d. across a 12Ω resistor in a circuit is 1.7 volts.

What would be the p.d. across a 24Ω resistor in the same circuit and in series with the first resistor?
13. What can always be stated about the current at all points in a series circuit?
14. The p.d. across a source supplying current to an external load of three resistors measures 12 volts. The p.d. across each resistor measures 6 volts. Is this possible? Explain.
15. Which unit is otherwise known as the 'coulomb per second'?
16. What is the more common name for the unit 'amp-second'?
17. In part of an electric circuit, two resistors, values $\mathbf{3 \Omega}$ and $\mathbf{6} \Omega$ are connected in parallel.

If the current flowing through the 3Ω resistor is $\mathbf{4 A}$, what current flows through the other and what is the voltage across each resistor?
18. How much charge moves through a resistance if 10 joules of energy is transferred from electricity to other forms and the p.d. across the resistor is 4 volts?
19. A $2.2 \mathrm{k} \Omega$ resistor and a $4.7 \mathrm{k} \Omega$ resistor form a voltage divider across a 12 volt battery. Calculate the voltage across the larger resistor.

20. In a voltage divider consisting of a $5 \mathrm{k} \Omega$ resistor and a $10 \mathrm{k} \Omega$ rheostat, what range of voltages would be available across the rheostat if the supply voltage was 12 V ?

21. A current of 2 amps flows through a 10Ω resistor which is in parallel with a second resistor of double the resistance.

What is the voltage across the second resistor and the current through it?
22. Three resistors, $\mathbf{7} \Omega, \mathbf{8} \mathbf{\Omega}$ and $\mathbf{1 2 \Omega}$ are connected in series with a 9.0 V battery. What would a high resistance voltmeter read if connected across the 12Ω resistor?

Internal Resistance

1. What do the letters 'e.m.f.' stand for?
2. In what unit is the quantity 'e.m.f.' measured?
3. In what unit is the quantity 'internal resistance' measured?
4. In what unit is the quantity 'potential difference' measured?
5. What do the letters 't.p.d.' stand for?
6. In this circuit, a high resistance voltmeter is connected across a cell which has an internal resistance.

(a) What happens to the reading on the voltmeter when the switch is closed?
(b) How would you calculate the value of the 'lost volts' due to the cell's internal resistance?
(c) What other measurement would be needed to allow the cell's internal resistance to be calculated?
7. In the circuit for Q6, would the cell's e.m.f. be measured with the switch open or closed? Explain your answer.
8. A high resistance voltmeter is connected across a cell. On open circuit, the meter reads 1.65 V . When the cell delivers a current to an external load resistance, the reading falls to 1.52 V .
(a) What is the value of the cell's e.m.f.?
(b) What is the value of the lost volts?
9. A cell has e.m.f. ' E ', internal resistance ' r ' and delivers a current ' i ' to an external load ' R '.
(a) Show that the terminal potential difference of the cell, ' \mathbf{V} ', is given by the equation:

$$
V=E-i r
$$

(b) Complete these equations, by changing the subject:
(i) $\mathrm{E}=$?
(ii) $\mathbf{i}=$?
(iii) $\mathbf{r}=$?
10. What would be the reading on a voltmeter connected across a cell of e.m.f. 1.55 V if the lost volts inside the cell were:
(a) 0 V
(b) 0.15 V
(c) 0.23 V
(d) 1.25 V?
11. What is generated inside a cell when current passes through its internal resistance?
12. A certain type of cell has an e.m.f. of 2 V and an internal resistance of 1Ω. For each of the batteries made from these cells, state the e.m.f. and internal resistance.
(a)

(b)

(c)

(d)

Questions 13-18 refer to the circuit shown. A cell has e.m.f. E and internal resistance r. A high resistance voltmeter is connected across the cell terminals and a low resistance ammeter measures the current delivered by the cell to a load resistor, \mathbf{R}. The dotted line indicates the actual cell which is shown as if it was a source of e.m.f in series with a resistor.

13. If $\mathbf{E}=1.5 \mathrm{~V} ; \mathbf{r}=1 \Omega ; \mathbf{R}=4 \Omega$, calculate the readings on the ammeter and voltmeter when the switch is: \quad (a) open \quad (b) closed.
14. If $\mathbf{E}=2.0 \mathrm{~V} ; \mathbf{r}=0.5 \Omega ; \mathbf{R}=9.5 \Omega$, calculate the readings on the ammeter and voltmeter when the switch is:
(a) open
(b) closed.
15. If $\mathbf{E}=1.20 \mathrm{~V} ; \mathbf{r}=0.2 \Omega ; \mathbf{R}=1.8 \Omega$, calculate the readings on the ammeter and voltmeter when the switch is:
(a) open
(b) closed.
16. With the switch open, the reading on the voltmeter is 1.50 V . When the switch is closed, it falls to 1.30 V and the ammeter reads 0.25 amps .
(a) What is the value of the 'lost volts'?
(b) Calculate the size of the cell's internal resistance.
(c) Calculate the value of the load resistor.
17. The e.m.f. of the cell is 2.0 V , its internal resistance is 1Ω and the load resistor measures 4Ω. With the switch closed, calculate:
(a) the ammeter reading,
(b) the cell's terminal potential difference
(c) the value of a different load resistor which draws 0.2 amps from the cell.
18. Calculate the ammeter reading and the value of the cell's e.m.f. if the voltmeter reads 1.1 V , the load resistor is 5.5Ω, the internal resistance is 0.5Ω and the switch is closed.
19.

The dotted line represents the case of a cell of e.m.f. 1.5 volts and internal resistance 1Ω.
(a) What is the voltmeter reading with switch \boldsymbol{S}_{1} open?
(b) What are the readings on the ammeter and voltmeter with switch $\mathbf{S}_{\mathbf{1}}$ closed and $\mathbf{S}_{\mathbf{2}}$ open?
(c) What do the readings become if switch $\mathbf{S}_{\mathbf{2}}$ is now closed?
20.

In the circuit above, when the switch is closed, calculate:
(a) the current flowing through the cell
(b) the power dissipated in the internal resistance
(c) the potential difference across the load resistor.
21. Repeat the calculations of $Q 20$ with the e.m.f. as 1.5 V , internal resistance 0.8Ω and load resistance 2.2Ω.
22. Three cells each have an e.m.f. of 1.5 V and internal resistance of 1.2Ω. Calculate the current delivered to an external component of resistance 8Ω when the cells are connected:
(a) in series
(b) in parallel.
[Answer in each case to 2 significant figures.]
23. A high resistance voltmeter, connected across the terminals of a cell on open circuit, reads 1.55 volts. The short circuit current of the cell is measured as 1.75 amps .

Calculate the value of the cell's internal resistance.
24.

In this circuit, a variable resistor (or rheostat) acts as a load on a cell of e.m.f. E and internal resistance \mathbf{r}. What happens to the readings on the ammeter and voltmeter as the resistance of the rheostat is increased?
25. It can be shown that the maximum power that a power supply, such as a battery, can supply to an external load occurs when the load's resistance is equal to that of the internal resistance of the power supply. Calculate the maximum power that these cells and battery can supply to an external load?
(a)

(b)

(c)

26. For a cell of e.m.f. 'E' and internal resistance 'r', the potential difference 'V' across the cell terminals is measured for different values of current ' I ' delivered to an external load.
(a) Assuming that E and r are constants, sketch the graph which would be obtained if 'V' was plotted against ' I '.
(b) Which feature of the cell is found from the intercept of the line on the y-axis?
(c) Which feature of the cell could be found from the gradient of the line?
27. For a cell of e.m.f. 'E' and internal resistance 'r', the current 'I' drawn from the cell is measured for a number of different values of load resistance 'R'.
(a) Assuming that \mathbf{E} and \mathbf{r} are constants, sketch the graph which would be obtained if ' R ' was plotted against the 'inverse of I' (that is $1 \div I$).
(b) What feature of the cell is found from the intercept of the line on the y-axis?
(c) What feature of the cell could be found from the gradient of the line?
28. The graph shows how the potential difference across the terminals of a cell varies with current drawn from the cell.

Use the graph the estimate:
(a) the e.m.f. of the cell
(b) its internal resistance
29. On graph paper, copy the graph of Q28 and add:
(a) the graph that would be obtained for a cell of the same e.m.f. but double the internal resistance
(b) the graph that would be obtained for a cell of the e.m.f. 4.0 volts and the same internal resistance as the cell in Q27.
30.

A cell delivers current to a load whose resistance can be varied.
The table gives values for the voltmeter and ammeter readings for a number of different load resistances.

Voltage in volts	1.8	1.7	1.6	1.5	1.4	1.3
Current in amps	1.0	1.5	2.0	2.5	3.0	3.5

(a) Draw a graph, on graph paper, of voltage against current.
(b) By using the straight line of the graph, estimate:
(i) the cell's internal resistance.
(ii) the cell's e.m.f.
31. Using the same circuit as in Q27, the current, I, delivered by the cell to the load resistor, \mathbf{R}, is measured for a number of values of the resistance.

Resistance (Ω)	0.2	0.4	0.6	0.8	1.0	1.2
Current (A)	1.50	1.25	1.07	0.94	0.83	0.75

(a) Show that: $\quad \mathbf{R}=\frac{\mathrm{E}}{\mathbf{T}}-\mathbf{r}$
(b) On graph paper, draw a graph of resistance against the inverse of current (that is $1 \div$ current). The graph should be a straight line.
(c) From the graph, deduce the values of:
(i) the cell's internal resistance.
(ii) the cell's e.m.f.
(iii) the short circuit current (that is, the current delivered to a load of zero resistance.)
32.

For this circuit, show that:
(a) $\mathbf{E}=\mathbf{V}+\mathbf{I r}$, where \mathbf{I} is the reading on the ammeter
(b) $\quad R=E / I-r$
(c) Assuming that \mathbf{E} and \mathbf{r} are constants, sketch the graph obtained when \mathbf{R} is plotted against $\mathbf{1} / \mathbf{f}$ for pairs of values of \mathbf{R} and \mathbf{I}.
(d) Which quantity would be calculated from the gradient of the line?
(e) Which quantity would be obtained from the intercept of the line on the ' y-axis'?

Voltage or Potential Dividers

1. Complete the formula for the voltage or potential difference across resistors 1 and 2 in this voltage divider.

2. For the voltage divider in Q1, calculate the voltage or potential difference across each resistor where the resistors and the supply voltage have these values:

	$\mathbf{V}_{\mathbf{s}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
(a)	10 V	500Ω	500Ω
(b)	10 V	1000Ω	250Ω
(c)	12 V	$1 \mathrm{k} \Omega$	$3 \mathrm{k} \Omega$
(d)	50 V	$2.2 \mathrm{k} \Omega$	$3.3 \mathrm{k} \Omega$
(e)	5 V	$1.2 \mathrm{k} \Omega$	300Ω
(f)	20 V	$5.6 \mathrm{k} \Omega$	$2.2 \mathrm{k} \Omega$

3. $\quad \mathbf{R}_{\mathbf{1}}$ is a fixed resistor and $\mathbf{R}_{\mathbf{v}}$ a variable resistor in this voltage divider. In each case, calculate the range of possible voltage readings on the voltmeter :

	$\mathbf{V}_{\mathbf{s}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{v}}$
(a)	12 V	$5 \mathrm{k} \Omega$	$0-10 \mathrm{k} \Omega$
(b)	10 V	$40 \mathrm{k} \Omega$	$0-10 \mathrm{k} \Omega$
(c)	6 V	10Ω	$0-10 \Omega$
(d)	20 V	$25 \mathrm{k} \Omega$	$0-25 \mathrm{k} \Omega$
(e)	12 V	$50 \mathrm{k} \Omega$	$0-25 \mathrm{k} \Omega$

4. Two 100Ω resistors form a potential divider across a 12 volt supply.
(a) Calculate the reading on the voltmeter.

12 V

(c) If the lamp's resistance was 100Ω, what would be the reading on the voltmeter?
(b) A 6 V lamp is now connected in parallel to the lower resistor. Suggest and explain what would happen to the reading on the voltmeter.

5. In this potential divider, calculate the potential difference (or voltage) across the points $A B, B C, C D, A C, B D$ and $A D$.

6. In these circuits, the voltmeter has a very high resistance. In each case, calculate the reading on the meter.
(a)

(b)

(c)

7. In each example, calculate the p.d. between the points \mathbf{P} and \mathbf{Q} :
(i) with switch S open
(ii) with switch \mathbf{S} closed.

8. This potential divider has a thermistor and a resistor in series. The table gives the thermistor's resistance at different temperatures.

(a) Calculate the reading on the voltmeter when the thermistor is at each of the three temperatures in the table.
(b) What is the thermistor's resistance when the voltmeter reads 2.0 V ?

Wheatstone Bridge

1. Which statement about an electric circuit could be correct: "the potential at a point in the circuit is 3 volts" or "the voltage at a point in a circuit is 3 volts"?
2. The voltage across a circuit component is 4.0 volts. An alternative way of stating this is: " the \mathbf{p} \qquad d \qquad across a circuit component is 4.0 volts".
3. The potential at point \mathbf{A} in a circuit is 2.0 volts and, at point $\mathbf{B}, 5.0$ volts.
(a) What is the potential difference between points \mathbf{A} and \mathbf{B} ?
(b) What is the voltage across $A B$?
4. (a) If the potential at the negative terminal of a 1.5 V cell is taken as 0 V , what would be the potential at the positive terminal?
(b) If the potential at the positive terminal of a 1.5 V cell is taken as 0 V , what would be the potential at the negative terminal?
5. In the circuit shown, the meter is a centre-zero galvanometer.

Assuming that the meter reads 'zero' when there is no current flowing through it, explain whether or not the potential at point \mathbf{A} is equal to the potential at point \mathbf{B}.
6. In the circuit shown, the meter is a centre-zero galvanometer.

Assuming that the meter reads 'zero' when there is no current flowing through it, explain whether or not the potential at point \mathbf{A} is equal to the potential at point \mathbf{B}.
7. For the circuit in Q6, at balance point, what is the relationship between the resistors $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{X} ?
8. For the circuit in Q6, at balance point, what change, if any, would happen to the reading on the meter if the battery voltage gradually decreased?
9. For the circuit in $\mathbf{Q 6}$, for what purpose is \mathbf{R} a variable resistor?
10. For the centre-zero meter used in the circuit in Q6, explain why it is important that the meter is sensitive rather than accurate.
11. In each case, the centre-zero meter in the circuit of Q 6 has been carefully zeroed by adjusting \mathbf{R}, a resistance box. Resistors \mathbf{P} and \mathbf{Q} are standard resistors and resistor \mathbf{X} is 'unknown'. Calculate each value of \mathbf{X}.

$\mathbf{P}(\Omega)$	$\mathbf{Q}(\Omega)$	$\mathbf{R}(\Omega)$
10	10	63
10	10	102
50	10	25
10	50	25
50	50	14
20	100	8.3
100	20	1.0
10	100	886

12. The accuracy of the calculated value of the 'unknown' resistor in a balanced Wheatstone Bridge circuit depends on certain factors. In each case, as for the circuit of Q6, explain whether or not this accuracy is affected by:
(i) the sensitivity of the centre-zero meter,
(ii) the zeroing of the centre-zero meter before use,
(iii) the accuracy of the meter is measuring a small current,
(iv) the voltage \mathbf{V} of the driver cell or battery and
(v) the accuracy of the standard resistors \mathbf{P} and \mathbf{Q} and the variable resistor \mathbf{R}.
13. If, for a balanced Wheatstone Bridge with resistors $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}, the following relationship is true,

$$
\frac{P}{Q}=\frac{R}{S}
$$

complete these relationships:
(a) $\frac{\mathbf{P}}{\mathbf{R}}=$
(b) $\frac{S}{R}=$
(c) $\mathrm{PS}=$
(d) $\mathbf{Q}=$
(e) $\mathbf{R}=$
(f) $\mathrm{S}=$
(g) $\mathbf{P}=$
14. In each case, where the Wheatstone Bridge has been balanced, calculate the value of the 'unknown' resistor ' \mathbf{X} ':

The diagram shows a 'metre bridge' set up to measure the resistance of resistor \mathbf{X}. The meter is a centre-zero galvanometer which has been adjusted to read zero with no current flowing though it.

Questions 15-20 refer to this metre bridge arrangement.
15. As shown in the diagram, is the metre bridge balanced or not? How do you know?
16. What would the meter read when the bridge was 'balanced'?
17. Why is the resistor \mathbf{R} a variable resistor such as a rheostat or resistance box?
18. Under balance conditions, what is the relationship between $X, \mathbf{R}, \mathbf{I}$ and (100-I)?
19. Copy and complete the table, using the formula for 'balance' conditions.

$\mathbf{I}(\mathrm{cm})$	$(100-\mathbf{I})$	$\mathbf{R}(\Omega)$	$\mathbf{X}(\Omega)$
30.0	-	60	-
50.0	-	120	-
60.0	-	24	-
45.5	-	502	-
56.4	-	254	-
-	50.0	98	-
-	45.7	588	-
-	52.3	2510	-

20. With the bridge balanced, what, if anything, would happen to the meter reading if the voltage 'V' of the driver cell decreased?
21. The resistance wire that is used to make a metre bridge has to have a very uniform resistance along the whole of its length.

Explain why this matters.
22. Suppose that the position of the knife-edged jockey, which makes contact with the resistance wire, can be 'read' from a metre rule alongside the wire to the nearest millimetre; [for example $\mathrm{I}=\left(45.6^{+} /-0.1\right) \mathrm{cm}$]. Explain why it would be best to adjust \mathbf{R} so that the bridge balanced with the jockey at around the midpoint of the wire rather than close to one end.
[Hint: consider how the accuracy of the calculated value for \mathbf{X} would be affected.]
23. A Wheatstone bridge is balanced. The value of just one of the resistors is changed by a small amount above and below its balance setting (by less than 15% of its 'balance setting'.) Readings of current are taken for each new setting.
A line graph of 'current ' I ' against change of resistance ' ΔR ' is constructed.
(a) Copy the axes and sketch in the resulting graph.

(b) What is the relationship between current and change of resistance?
24. In an 'out-of-balance' bridge, is the magnitude of the current affected by changes to the voltage ' \mathbf{V} ' of the driver cell?
25. In an 'out-of-balance' bridge, is it important that the meter reads current accurately, or does it merely have to be sensitive to small changes in current?
26. In these bridge circuits, Circuit A has a thermistor in one arm and Circuit B has a Light Dependent Resistor (LDR).

Circuit A

Circuit B
(a) Suitably calibrated, which quantity could be measured or monitored by the meter in each circuit?
(b) What is meant by the term 'calibrated'?
27. What effect, if any, would the reversal of the driver cell terminals have on the meter reading in an out-of-balance Wheatstone Bridge?

Household Electricity

1. Use the formula 'units used = power \mathbf{x} time' to calculate the value of the missing quantities in the table:

units (kWh)	power	time (h)
-	3 kW	2
-	1.5 kW	10
-	500 W	2
10	2.5 kW	-
240	3 kW	-
0.5	0.1 kW	-
2	-	4
6	-	2
10	-	100

2. A 2 kW kettle is used for a total time of 2 hours over a whole week. How many units (kWh) of electricity is used and what is the total cost if each unit is priced at 7 pence?
3. How many hours could a 100 W lamp be lit before it used 4 kWh of electric energy?
4. What is the power rating, in watts, of a hair dryer which uses 4 kWh in a time of 5 hours?
5. How many hours could a 60 W lamp be lit for 42 pence if 1 kWh costs 7 pence?
6. The ' $\mathbf{k W h}$ ' is a unit of energy; so is the 'joule'. Calculate the number of joules in each kWh (kilowatt-hour).
7. Change $9 \times 10^{6} \mathrm{~J}$ into kilowatt-hours (kWh).
8. Show, by calculation, which would cost more:
a 100 W lamp lit for 3 day non-stop or a 2.5 kW fire switched on for 3 hours.
9. At 7 p per unit (kWh), how much more would it cost to run a 3 kW fire for 4 hours than a 100 W lamp for 100 hours?
10. For how long could a 60 watt lamp be lit for the same cost as a 3 kW fire on for 2 hours?
11. An electric shower is rated at 10 kW . How much would it cost to run, in total, for a whole year at 7 pence per unit (kWh) if it was used on average for 3 hours per week?
12. What is the power of a hair dryer which costs twice as much to run for 20 minutes as a 2 kW kettle costs to run for 5 minutes?
13. A householder's electricity bill states that the number of units used has cost $£ 31.50$. If each unit costs 7p, how many units have been used and for how long could they have run a 3000 W electric fire?
14. Given a choice of the following cartridge fuses for mains plugs: $3 \mathrm{~A}, 5 \mathrm{~A}, 10 \mathrm{~A}$ and 13 A , which would be most suitable for fitting in the plugs for these appliances?
Support your choice by indicating the current supplied to each appliance.
Take the mains voltage as 230 V .
(a) a 2.2 kW kettle
(b) a 100 W table lamp
(c) a 3 kW fire

(d) a 1 kW hair dryer
 (e) a 1.3 kW fan heater

15. What is the purpose of the fuse in a plug; (i.e. what does it protect)?
16. What happens to a fuse when too much current flows through it? (Avoid stating that the fuse 'blows').
17. To which part of an appliance should the earth wire be connected and what is its function?
18. Which colour of wires would be found in the flex of an appliance which has the symbol shown below stamped on its plastic case?

19. An appliance with a plastic case is double insulated.

State which wire is 'missing' from its flex and explain why is in not required?
20. In some houses, the mains electricity is earthed by strapping a thick wire to the cold water pipe. Lately, these pipes are often made of plastic.
Why would this be unsuitable for connecting the earth wire?
21. Household appliances plugged into the ring power circuit are connected to each other in parallel. If the following appliances are all switched on in the same ring circuit, calculate the total current drawn from the 230 V mains:
a $\mathbf{3}$ kW fire, a $\mathbf{2}$ kW kettle, two 150 watt table lamps and a 300 watt television.
22. Calculate the maximum power which an appliance should have if it is connected to the 230 V mains by a 5 A cable.
23. How would the thickness of the wire inside a plug cartridge fuse rated at 13 A compare with one rated at 3A? Why?
24. Why, after being on for a while, does the live pin of the plug supplying current to an appliance often feel warm, but the other two pins are cold?
25. In which wire, live, neutral or earth, should the fuse be connected? Why?
26. In which wire of an appliance should its switch be connected? Why?
27. If the metal casing of a mains appliance becomes live due to a fault, explain why would it be dangerous if the appliance was not earthed.

Alternating Current and Voltage

1. What is meant by the 'frequency' of an a.c. supply?
2. An electricity source has a frequency of 60 Hz . How many complete cycles occur in:
(a) 1 s
(b) 5 s
(c) 10 s
(d) 0.5 s
(e) 2 minutes?
3. An alternating electricity source produces 500 complete cycles in 10 seconds. What is the frequency of the supply?
4. The handle of a model dynamo is turned at the rate of $\mathbf{1 2 0}$ turns per minute. It is geared so that the magnet rotates 4 times for each turn of the handle. What would be the frequency of the alternating voltage induced in the coil surrounding the magnet?
5. The diagram shows the screen of a CRO, displaying an a.c. waveform.

(a) What would the peak voltage be if the 'Y-gain' control was set at
(i) $1 \mathrm{~V} / \mathrm{div}$
(ii) $2 \mathrm{~V} / \mathrm{div}$
(iii) $5 \mathrm{~V} / \mathrm{div}$
(iv) $10 \mathrm{~V} / \mathrm{div}$?
(b) What would the frequency be if the 'time base' control was set at
(i) $10 \mathrm{~ms} / \mathrm{div}$
(ii) $5 \mathrm{~ms} / \mathrm{div}$
(iii) $1 \mathrm{~ms} / \mathrm{div}$
(iv) $500 \mu \mathrm{~s} / \mathrm{div}$?
6. The diagram shows the screen of a CRO, displaying an a.c. waveform.

What would the frequency be if the 'time base' control was set at
(i) $10 \mathrm{~ms} / \mathrm{div}$
(ii) $5 \mathrm{~ms} / \mathrm{div}$
(iii) $1 \mathrm{~ms} / \mathrm{div}$
(iv) $500 \mu \mathrm{~s} / \mathrm{div} ?$
7. For the sine wave voltage displayed in Q 6 , what is the average of the voltage over the whole display?
8. In the term 'r.m.s. voltage', what do the letters 'r.m.s.' stand for?
9. In each case, calculate the value of the r.m.s. voltage for these peak a.c. voltages:
(a) 5.0 V
(b) 10 V
(c) 156 V
(d) 339 V
(e) 325 V
10. For the a.c. voltage displayed on this CRO screen, calculate the r.m.s. voltage if the ' y-gain' control is set at:
(a) $1 \mathrm{~V} / \mathrm{div}$
(b) $2 \mathrm{~V} / \mathrm{div}$
(c) $5 \mathrm{~V} / \mathrm{div}$
(d) $10 \mathrm{~V} / \mathrm{div}$

11. In each case, calculate the value of the peak voltage for these r.m.s. voltages:
(a) 14.1 V
(b) 212 V
(c) 7.1 V
(d) 200 V
(e) 40 mV
12. What is the 'peak-to-peak' voltage for a 5.0 volt r.m.s. a.c. supply?
13. Calculate the r.m.s. voltage for a supply which has a peak-to-peak voltage of 56.6 volts.
14. If the r.m.s. value of the alternating current flowing in a circuit is 5 amps , what is the peak current?
15. If $V_{\text {rms }}=V_{\text {peak }} \div \sqrt{ } 2$ and $I_{\text {rms }}=I_{\text {peak }} \div \sqrt{ }$, show that the average power dissipated in a resistor connected to an a.c. supply is equal to half of the peak power.
16. Copy the CRO 'screen' and trace the appearance of a $50 \mathrm{~Hz}, 20 \mathrm{~V}$ r.m.s. waveform with these control settings:
time base: $5 \mathrm{~ms} / \mathrm{div}$
Y-gain: $10 \mathrm{~V} / \mathrm{div}$

Electromagnetism and Electromagnetic induction

1. What kind of invisible force field exists around a conductor when there is a current flowing through it?
2. In the diagram, a current (from + ve to -ve) is flowing through a long, straight conducting wire.

One of the magnetic field lines surrounding the wire is shown.
(a) Copy the diagram and mark the direction of the field on line.
(b) State what would happen to the field direction if the current was reversed.
3. What happens to the strength of the magnetic field round a long, straight current-carrying conductor as the distance from the conductor increases?
4. An electromagnet can be made by winding a few turns of wire round a soft iron core.

(a) How is the magnetism turned on?
(b) Suggest two ways in which the strength of the electromagnet could be increased.
5. Why is soft iron rather than steel used for the core material of an electromagnet?
6. When a current-carrying conductor is in a magnetic field, a force acts on the conductor.
(a) How does the direction of the force on the conductor compare with the direction of the field and the direction of the current?
(b) State two ways of reversing the direction of the force on the conductor.
(c) State two ways of increasing the size of the force on the conductor.
7. The diagrams show the direction of current (+ve to -ve) flowing through a conductor in a magnetic field.
The direction of the field (north to south) in each case is also given.
(a) current

(b)

Copy the diagram and add an arrow to show the direction of the force acting on the conductor.
8. The diagram of a simple d.c. motor shows the two edges of the rotating coil inside the magnetic field of the magnets. (The field lines are not shown).
The direction of the force acting on the left side edge of the coil is shown.

(a) Copy the diagram and draw a second arrow to show the size and direction of the force acting on the right side edge of the coil.
(b) Explain, in terms of current direction, why the force is in the direction you have indicated.
(c) What is the name of the part of the motor which reverses the direction of current through the coil every half turn?
9. In a real motor:
(a) what is used in place of permanent magnets?
(b) why are the coils wound on armatures made of soft iron?
(c) why is a number of coils wound on the armature at different angles?
10. Copy the following statement about electromagnetic induction and complete it by inserting the missing words:
" when there is a \qquad in the \qquad flux linking a circuit, there is an \qquad induced in the circuit."
11. If a magnet is pushed into a conducting coil which is part of a complete circuit,
electric energy is generated in the circuit.

Since work must be done by the magnet to transfer energy to electricity, explain why:
(a) a force is needed to push the magnet into the coil.
(b) the magnet has to be moved.
12. A long wire, connected to a centre-zero galvanometer, is moved downwards through a magnetic field. The field is between two permanent magnets, with opposite poles facing each other.

(a) Is the direction of the induced current (+ve to -ve) from \mathbf{A} to \mathbf{B} or \mathbf{B} to \mathbf{A} ?
(b) How would the pointer on the galvanometer move if the wire was moved up through the magnetic field?
(c) What would the induced current, if any, be in the conductor if it was held still in the centre of the magnetic field?
(d) State three ways of increasing the deflection of the pointer on the galvanometer when the wire is moved through the magnetic field.
13. A boy is investigating the effects of electromagnetic induction.

He moves a conducting wire up and down between two permanent magnets, expecting the pointer on the galvanometer to show a deflection.
However, the pointer does not move. The meter is working and is sensitive enough for the experiment. There are no breaks in the wires.

What must be wrong?
14. Complete this statement about Lenz' Law:
" the \qquad of an induced \qquad is always such as to §
\qquad the change causing it."
15. A bar magnet is pushed into a conducting coil which is connected to a centre- zero galvanometer meter. The pointer is deflected to one side showing that there is an induced current in the coil.

(a) Is a north or south pole produced at the left end of the coil?
(b) Explain your answer to (a) in terms of Lenz' Law.
(c) Where does the energy come from to generate the electric energy in the coil?
(d) Which pole would appear at the left end of the coil if the magnet was pulled out of the coil?
16. A student wrote in an exam that the direction of an induced e.m.f. always assisted the change causing it. Explain why this is impossible.
(Hint: remember that electric energy cannot be created from 'nothing'.)
17. A cyclist notices that he has to pedal harder to keep his cycle moving at a steady speed when it gets dark and he connects his dynamo to the rear wheel.
Explain why, in terms of Lenz' Law. (The bicycle dynamo works by the wheel making a permanent magnet rotate inside a coil of wire connected to the cycle's lamps.)
18. Two conducting coils are wound on soft iron cores. One is connected to a battery, the other to a centre-zero galvanometer.

(a) When either coil is moved back and forth, there is a corresponding back and forth deflection on the meter. Explain.
(b) What deflection, if any, would the meter show if both coils were at rest?
(c) What deflection, if any, would the meter show if both coils were moved back and forth at the same rate, with the gap between them steady?
19. Two conducting coils are wound on soft iron cores. One is connected to a low frequency a.c. supply set at 3 hertz, the other to a centre-zero galvanometer.

There is no relative movement between the two coils and yet the meter pointer moves back and forth three times every second.
(a) Explain why an e.m.f. is induced in the second coil even though there is no movement involved.
(b) What important device is based on this effect?
20. Copy the diagrams of permanent magnets and draw lines to show the shape of the magnetic field surrounding the magnets. Mark an arrow on each line to indicate the direction of the field.
(a)
(b)

21. Given a soft iron core, a long conducting wire and a battery, how could an electrical device be made which would have a magnetic field similar to that of a permanent bar magnet?

Transformers

1. Use the formula for an ideal transformer,

$$
\frac{\text { secondary voltage. }}{\text { primary voltage }}=\frac{\text { turns in secondary }}{\text { turns in primary }} \text { or } \frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{p}}}=\frac{\mathrm{N}_{\mathrm{S}}}{\mathrm{~N}_{\mathrm{p}}}
$$

to calculate the value of the missing quantities in the table.

$\mathbf{V}_{\mathbf{s}}(\mathbf{V})$	$\mathbf{V}_{\mathbf{p}}(\mathbf{V})$	$\mathbf{N}_{\mathbf{s}}$	$\mathbf{N}_{\mathbf{p}}$
30	240	-	4000
8	240	-	6000
12	240	30	-
300	12	500	-
-	240	50	1200
20	-	500	6000

2. A step-down transformer has a turns ratio of $30: 1$. It has 6000 turns in the primary coil. Calculate the number of turns in its secondary coil.
3. How many turns are in the primary winding of a transformer if, when connected to 230 V a.c., the 200 turn secondary has a voltage of 8 volts?
4. For each of the transformers below, state the reading on the voltmeter connected across the secondary winding. (Careful!)
(a)
100800

(b)

5. In a very well constructed transformer which has very few energy losses, how does the secondary output power compare with the primary input power?
6. Assuming that a transformer is 100% efficient, how much power would need to be supplied to the primary if a 12 volt, 24 watt lamp was lit at its rated voltage from the secondary?
7. Calculate the current drawn from the 230 V a.c. mains by the primary winding of a transformer which supplies 23 watts of power to a lamp across the secondary winding. (Assume the transformer does not lose any energy).
8. In the circuit shown, a mains step-down transformer supplies power to two $12 \mathrm{~V}, 24 \mathrm{~W}$ lamps in parallel.
$1000 \quad 52$

Calculate: (a) the current in the secondary winding
(b) the current in the primary winding. (Assume the transformer is 100% efficient).
9. A doorbell for a house works from 8 V a.c. To operate the bell from the 230 V mains supply, a transformer can be used. How many turns would be in the primary winding for each turn in the secondary winding? Would the transformer be a step-up or a step-down type?
10. To produce an output of 48 V a.c. from an input of 230 V a.c., how many turns would be required in the primary winding if there were 100 in the secondary?
11. State the output voltage produced by a transformer with 100 turns in the primary coil and 600 turns in the secondary coil when connected to the following input voltages:
(a) 12 V a.c.
(b) 12 V d.c.
(c) 230 V a.c.
12. The input voltage to a step-down transformer is 230 V a.c. at a frequency of 50 Hz . If the primary winding has 6000 turns and the secondary 314 turns, what is the voltage output and what is its frequency?
13. A step-up transformer has 500 turns in the primary coil and 10000 turns in the secondary coil. If a voltage of 250 V a.c. is applied to the primary at 50 Hz , what are the voltage and frequency of the output at the secondary?
14. A 12 volt car battery is placed across the primary coil of a 1:20 step-up transformer.

What is the output voltage across the secondary?
15. A pupil makes a basic step-down transformer and sets up the circuit shown to light a 12 V lamp.

(a) Calculate the input power and the output power of the transformer.
(b) How much energy is wasted every second in the transformer?
16. A transformer is used to step down the voltage from a 12 V a.c. supply to light a 2.5 V lamp.

Calculate: (a) the energy per second wasted in the transformer (b) the percentage efficiency of the transformer.
17. A transformer is operated from a constant voltage a.c. supply. The readings on the ammeters in the primary and secondary circuits are as shown when just one lamp is lit. The lamps are identical.

What would the readings on the meters be when the switch ' \mathbf{S} ' was closed? (Assume the transformer is 100\% efficient).

Power transmission

1. A 24 W lamp is to be lit from a 12 V a.c. supply with two long wires connecting the lamp to the supply. The wires have a total resistance of 1Ω.

(a) If the supply delivers 24 W to the wires and lamp, calculate the current in the wires and the power lost in the wires.
(b) The system is now changed so that the power supply voltage is increased by a step-up transformer to 120 V and, as before, 24 W of power is delivered to the resistance wires and lamp. At the other end of the wires, the output of a step-down transformer is connected to the 12 V lamp.

Calculate the current in the wires and the power lost in the wires.
2. Electricity is generated in power stations at 11 kV . It is then stepped-up, by transformers, to 132 kV or 400 kV to be transmitted cross-country on the grid. What is the advantage of transmitting the power at such high voltages?
3. 50 kW of power is to be transmitted through long cables to a small hamlet.

The cables have a total resistance of 0.5Ω. Calculate the power lost in the cables if the power is delivered to the cables at (a) 250 V ac. and (b) 250 kV a.c., after being stepped-up by a transformer.
4. A 12 V 36 W lamp is to be lit from a 12 V ac. supply but the connecting wires are very long and have a significant resistance of 2Ω.

12 V 36 W

Assuming that the lamp's resistance is constant,
(a) Calculate the current delivered to the wires by the power supply.
(b) Calculate the heat generated every second in the wires.
(c) What is the potential difference across the lamp?
(d) How much power is delivered to the lamp?
(e) Explain how two identical transformers, each able to change the input voltage by a factor of ten, could be added to the circuit to enable almost all of the power from the supply to reach the lamp.

Electric fields

charge on the electron, $\mathrm{e}=-1.6 \times 10^{-19} \mathrm{C}$
mass of the electron, $m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$

1. It takes $3.2 \times 10^{-18} \mathrm{~J}$ of work to move an electron between two points in an electric field. What is the potential difference between the points?
2. An electron 'falls' from rest through an electric field from point \mathbf{A} to point \mathbf{B}.

(a) What is the p.d. between \mathbf{A} and \mathbf{B} ?
(b) How much work is done by the field in accelerating the electron from \mathbf{A} to \mathbf{B} ?
(c) Calculate the electron's speed as it reaches B.
3. In an 'electron gun', an electron is accelerated from rest by a voltage (p.d.) of 500 V between the cathode (-) and anode (+).

(a) How much work is done by the electric field in accelerating the electron between the cathode and anode?
(b) Calculate the electron's speed as it reaches the anode.
4. Non-relativistic calculations for calculating the speed reached by an electron accelerated across a voltage apply up to around 15% of the speed of light. Above that speed, the increase in mass of the electron due to relativistic effects becomes significant and the speed calculated too large.
(a) What speed does an electron have at 15% of the speed of light?
(b) Calculate the voltage that would accelerate an electron from rest to that speed. Answers coorect to 2 significant figures.

Capacitance

1. Use the formula 'capacitance $=$ charge \div potential difference' $\mathbf{C}=\mathbf{Q}_{/ \mathbf{V}}$, to calculate the values of the missing entries in the table.

capacitance (F)	charge (C)	p.d. (V)
-	2×10^{-6}	1.0
-	0.018	9.0
-	1.2×10^{-3}	12
0.01	-	6.0
1.5×10^{-12}	-	9.0
10^{-9}	1.2×10^{-8}	-
2×10^{-6}	4×10^{-4}	-

2. Express the following capacitances in microfarads:
(a) $2.0 \times 10^{-6} \mathrm{~F}$
(b) $1.6 \times 10^{-5} \mathrm{~F}$
(c) 10000 nF
(d) $10^{-7} \mathrm{~F}$
3. Explain the difference in meaning between the terms 'capacitor' and 'capacitance'.
4. What is the value of the capacitance of a capacitor which has a charge of $96 \mu \mathrm{C}$ on its plates when the potential difference across the plates is 12 volts?
5. It takes $9 \times 10^{-5} \mathrm{C}$ of charge to raise the potential difference across the plates of a capacitor to 9.0 volts.
(a) Calculate its capacitance in microfarads.
(b) How much more charge would be added to its plates if the p.d. became 12 volts?
6. How much charge would be needed to raise the potential difference across the plates of a $100 \mu \mathrm{~F}$ capacitor to 9 volts?
7. Calculate the charge on the plates of a 1 pF capacitor connected to a 1.5 V cell. [1 $\mathrm{pF}=1$ picofarad $=10^{-12} \mathrm{~F}$.]
8. How much charge would be on the plates of the capacitor in each circuit after the switch was closed and the ammeter reading had fallen to zero?

9. An electrolytic capacitor is connected to a 12 volt battery. The 'negative' plate of the capacitor acquires a total charge of electrons of -0.06 coulombs.
(a) What is the value of the capacitance?
(b) How much charge is on the 'positive' plate of the capacitor?
10. A $10000 \mu \mathrm{~F}$ capacitor is connected to a 9 volt battery.

How much charge is there on each of the capacitor's plates when fully charged?
11. (a) Which diagram shows an electrolytic capacitor correctly connected to a d.c. power supply?

(b) What is dangerous about connecting this type of capacitor with incorrect polarity?
12. The case of a capacitor reads: ' $8 \mu \mathrm{~F} 63 \mathrm{~V}$ '. What is the significance of the ' 63 V '?
13. How much energy is stored in a fully charged $5000 \mu \mathrm{~F}$ capacitor connected to a 12 volt battery?
14. An $8 \mu \mathrm{~F}$ capacitor is charged from a 9 volt battery. How much energy does it store when fully charged?
15. When a $10000 \mu \mathrm{~F}$ capacitor is charged from a battery, 720 mJ of energy is stored. What is the battery voltage?
16. How much energy is stored by the capacitor in each circuit when the switch has been closed and the reading on the ammeter has fallen to zero?

17. A $2000 \mu \mathrm{~F}$ capacitor stores 36 millijoules of energy when charged from a d.c. power supply.
How much charge has the power supply delivered to the capacitor?
18. Which quantity is given by the gradient of a 'charge against voltage (p.d.) graph' for a capacitor?
19. Which quantity is given by the area under a 'charge against voltage (p.d.) graph' for a capacitor?
20. For each of the 'charge against pd.' graphs for a capacitor, calculate:
(a) the capacitance
(b) the energy stored by the capacitor when fully charged.
(A)

(B)

21. For each circuit, calculate the initial charging current when the switch is closed.
(a)

(b)

22. An uncharged $100 \mu \mathrm{~F}$ capacitor is connected in a series to a 6.0 volt battery, a $2 \mathrm{k} \Omega$ resistor and a switch.
(a) What is the magnitude of the current in the circuit just after the switch is closed?
(b) At a certain point in the charging process, the charging current is 1.5 mA . At this instant, what is the potential difference across the resistor?
23. What constant charging current would be needed to fully charge a $10000 \mu \mathrm{~F}$ capacitor from a 12 volt battery in 2 minutes?
24. (a) How long would a constant charging current of 2.5 mA take to fully charge a $2000 \mu \mathrm{~F}$ capacitor from a 10 V d.c. power supply?
(b) What would the resistance in the circuit need to be at the start of the charging process?
25. When capacitors are connected in parallel, their capacitances add.

How much energy is stored when the capacitors in the circuit below are fully charged if each has a value of $500 \mu \mathrm{~F}$?

26. In the circuit shown, a $1000 \mu \mathrm{~F}$ capacitor is being charged by a 10 volt battery. A 500Ω resistor is in series with the capacitor.

At one instant, the voltmeter reads 4.2 V . At this instant:
(a) what is the p.d. across the capacitor,
(b) how much charge is on the capacitor's plates and
(c) what is the reading on the milliammeter?
27. The graph shows how the charging current for a capacitor in series with a resistor varies with time. The initial charging current is 10 mA .

(a) What would the initial charging current be for a capacitor of double the capacitance, with the same resistor and battery.
(b) What would the initial charging current be if the original capacitor was charged from the same battery but with a resistor of double the resistance?
28. What quantity is given by the area under the current-time graph for a charging capacitor?
29. A capacitor, in series with a resistor, is charged from a battery. The current varies with time as shown by curve \mathbf{A}. The same capacitor is charged from the same battery, but is in series with a larger resistor.
The variation of current with time is shown as curve \mathbf{B}.

What can you deduce about the areas under curve \mathbf{A} and curve \mathbf{B} ? Explain.
30. The graph shows how the charging current for a capacitor ' \mathbf{C} ' in series with a resistor ' \mathbf{R} ' varies with time after the switch ' \mathbf{S} ' is closed. The capacitor is charged by a battery. A computer and interface is connected across the resistor.

(a) The computer and interface measure the potential difference across the resistor. Explain how the computer is able to plot a graph of current against time.
(b) The switch is opened and the capacitor is fully discharged.

The resistor is replaced with one of greater value. No other changes are made to the circuit. Copy the graph and, on it, sketch a possible curve for the charging current of the capacitor with the new resistor.
(c) The experiment is repeated with the original resistor in place but a capacitor with a smaller value of capacitance. Sketch a possible charging curve.
31. The graph shows how the potential difference across a capacitor ' \mathbf{C} ' in series with a resistor ' \mathbf{R} ' varies with time after the switch ' \mathbf{S} ' is closed. The capacitor is charged by a 9 V battery. A computer and interface is connected across the capacitor.

(a) What is the value of the p.d. 'V' as marked on the graph? Explain.
(b) Copy the graph and sketch a possible curve for the charging of a larger value of capacitor from the same battery and with the same resistor. Label it.
(c) Sketch a possible curve if the original capacitor was charged with the same battery but a smaller value off resistor. Label it.

32. A capacitor, in series with a resistor, is being charged from a 12 volt battery. High resistance voltmeters are connected across the capacitor and resistor.

At any instant during the charging of the capacitor, what would the sum of the readings on the voltmeters equal? Explain.
33. A $2200 \mu \mathrm{~F}$ capacitor, in series with a 2000Ω resistor, is being charged from a 9.0 volt battery. A high resistance voltmeter is connected across the capacitor.

At certain instants during the charging process, the p.d. across the capacitor has the following values:
(i) 2.0 V
(ii) 3.5 V
(iii) 6.2 V
(iv) 8.3 V
(a) At each of these instants, what would be the p.d. across the resistor?
(b) Calculate the initial charging current of the capacitor, in milliamps (mA).
(c) When fully charged, what would be the p.d. across the capacitor?
(d) When fully charged, what would be the p.d. across the resistor?
(e) How much charge is on the capacitor plates when it is fully charged?
(f) What would be the value of the charging current at the instant when the p.d. across the capacitor was 6.0 V ?
34. The graph shows how the p.d. across a capacitor varies with time as it is charged from a 9.0 V battery, through a series resistor.

Copy the graph and add a curve to show how the p.d. across the resistor (which is in series with the charging capacitor) varies with time.
35. The 'reactance' $\mathbf{X}_{\mathbf{c}}$ of a capacitor is a measure of its opposition to the passage of alternating current.
How is the magnitude of the reactance affected by:
(a) the value of the capacitance and
(b) the frequency of the current?
36. Describe the graph which would result if the current delivered from a signal generator with a constant r.m.s. output voltage through a capacitor was plotted against frequency.
37. An a.c. power supply, which has a constant output voltage but variable frequency, delivers alternating current to a capacitor in series with a lamp.
At a certain frequency, the lamp is glowing dimly.

(a) What happens to the brightness of the lamp as the frequency is increased. Explain.
(b) What would happen to the reading on the voltmeter as the frequency was increased? Explain.
38. In the circuit shown, a capacitor is continuously charged and discharged from a 9.0 volt battery through a series resistor by moving the two-way switch between positions \mathbf{X} and \mathbf{Y}.

A computer plots a graph of the voltage across the capacitor against time as it charges and discharges.

(a) Which switch position results in the capacitor charging?
(b) Copy the 'screen' of the computer and extend the trace to show what would happen if the switch was moved to position \mathbf{Y}.

Computer 'screen'

(c) Add possible traces to show how the charging and discharging voltage would differ if :
(i) the capacitor had a smaller value
(ii) the resistor had a smaller value.
39. In the circuit shown, a capacitor is continuously charged and discharged from a 9 volt battery through series resistors ' $\mathbf{R}_{\mathbf{1}}$ ' and ' $\mathbf{R}_{\mathbf{2}}$ ' by moving the two-way switch between positions \mathbf{X} and \mathbf{Y}. A computer plots a graph of the voltage across the capacitor as it charges and discharges.

(a) Copy the 'screen' of the computer and extend the trace to show what would happen if the switch was moved to position Y if
(i) resistor ' $\mathbf{R}_{\mathbf{2}}$ ' was larger than ' $\mathbf{R}_{\mathbf{1}}$ '
(ii) resistor ' $\mathbf{R}_{\mathbf{2}}$ ' was smaller than ' $\mathbf{R}_{\mathbf{1}}$ '

(b) In each case, what is the maximum voltage reached by the capacitor?
40. In the circuit shown, a capacitor is continuously charged and discharged from a 9 volt battery through series resistors ' $\mathbf{R}_{\mathbf{1}}$ ' and ' $\mathbf{R}_{\mathbf{2}}$ ' by moving the two-way switch between positions \mathbf{X} and \mathbf{Y}.

A computer plots a graph of the charging and discharging current by measuring the p.d. across a resistor ' \mathbf{R}_{3} ' in series with the capacitor.

(a) Copy the 'screen' of the computer and extend the trace to show what would happen if the switch was moved to position \mathbf{Y} if
(i) resistor ' $\mathbf{R}_{\mathbf{2}}$ ' was larger than ' $\mathbf{R}_{\mathbf{1}}$ ' and
(ii) resistor ' $\mathbf{R}_{\mathbf{2}}$ ' was smaller than ' $\mathbf{R}_{\mathbf{1}}$ '.

Computer 'screen'

(b) How would the initial charging current of the capacitor be calculated?
(c) How would the initial discharging current of the capacitor be calculated?
(d) What effect, if any, would the value of the resistors have on the final charge stored on the capacitor plates?
(e) Calculate the charge stored on the capacitor plates, when fully charged, if its value is $20 \mu \mathrm{~F}$.
(f) Calculate the energy stored in the $20 \mu \mathrm{~F}$ capacitor when fully charged.

Digital Electronics

1. The block diagram of an electronic system has one term missing from the 'middle' stage. What is the missing term?

2. From the following list, identify which four items could be used as input devices of an electronic system:

thermistor	LED	filament lamp
motor	LDR	pressure switch transistor
	battery	buzzer

3. In the circuit below, the ammeter reads 10 mA and the value of the resistor \mathbf{R} is 700Ω.

(a) Calculate the potential difference across the resistor.
(b) Calculate the potential difference across the LED.
(c) What is the current through the LED?
(d) Calculate the forward resistance of the LED.
4. An LED is to be operated from a 6 V supply at its rated p.d. of 2 volts. Its forward current is 10 mA .

Calculate the value of the 'protecting' resistor \mathbf{R} needed to limit the current through the LED to 10 mA .
5. From the information given in the circuit diagram, calculate the value of the supply voltage. The voltmeter reads 2.0 volts.

6. A girl sets up the circuit shown to observe the operation of an LED.

The LED fails to light up.

What is wrong with her circuit? (None of the components is faulty).
7. A boy sets up the circuit shown to observe the operation of an LED. The LED, rated at $2 \mathrm{~V} ; 20 \mathrm{~mA}$, fails to light up.

What is wrong with his circuit? (None of the components is faulty).
8. A transistor has a current gain of 200. If the collector current is 10 mA , calculate the value of the base current. State the answer in microamps.
9. A transistor has a collector current of 12.5 mA when the base current is $25 \mu \mathrm{~A}$. Calculate its current gain.
10. What is the base current (in $\mu \mathrm{A}$) of a transistor with a current gain of 250 when the collector current is 5 mA ?
11. (a) In the circuit shown, what is the p.d. across
(i) the resistor,
(ii) the switch when the switch is open?
(b) What is the p.d. across:
(i) the resistor,
(ii) the switch when the switch is closed?

12. In this circuit, the transistor acts as a switch.

(a) Is the transistor switched on or off when the switch is open?
(b) Is the LED on or off?
(c) What happens when the switch is closed?
13. Redesign the circuit in Q12, using the same components so that the LED is on when the switch is closed.
14. The resistance of a thermistor falls as its temperature increases.

In the potential divider shown below, what happens to the p.d. across:
(i) the resistor,
(ii) the thermistor as the temperature increases?
(b) What is the p.d. across the thermistor when the voltmeter reads 2.4 V ?

15. The circuit below is designed to switch on the LED when the temperature falls below a certain value.

Explain whether or not it would operate as planned.
16. The resistance of a light dependent resistor (LDR) falls as the light level increases.
(a) In the potential divider shown below, what happens to the p.d. across:
(i) the resistor
(ii) the LDR as the light level increases?
(b) What is the p.d. across the LDR when the voltmeter reads 6.2 V?

17. The circuit below is designed to switch on the LED when the light level falls below a certain value.

(a) Explain how the circuit operates, in terms of the voltage across the variable resistor.
(b) If the LED is found to light when the light level is still too bright, suggest what adjustment should be made to the circuit.
18. In this circuit, a high resistance voltmeter is connected across a capacitor which is in series with a resistor.

The capacitor is totally uncharged.

(a) What is the reading on the voltmeter when the switch remains open?
(b) When the switch is closed, describe what happens to the reading on the voltmeter.
(c) What is the maximum reading on the voltmeter?
19. A capacitor and resistor can be used as part of a time delay circuit.

In the circuit shown above, the capacitor charges when the switch is closed. The time it takes to charge to a certain voltage depends on two factors other than the battery voltage.
(a) What are the two factors which affect the time to charge the capacitor?
(b) State two different changes which could be made to circuit components, each of which would increase the charging time.
20. The voltage-time graph shows how the voltage across a charging capacitor varies with time.

(a) Which component in the charging circuit has a voltage equal to \mathbf{X} ?
(b) Copy the graph and add to it a sketch of a possible curve for charging the same capacitor from the same battery but with a larger value resistor in series with it.
21. (a) In the potential divider shown below, what happens to the p.d. across:
(i) the resistor?
(ii) the capacitor as the time passes after the switch has been opened?
(b) What is the p.d. across the capacitor when the voltmeter reads 5.4 V ?

22. The circuit below is designed to switch on the buzzer a certain time after the switch is opened.

(a) Explain how the circuit operates, in terms of the voltage across the capacitor.
(b) If the buzzer is found to sound too quickly, suggest two changes which could be made to circuit components, each of which would increase the time taken for the buzzer to sound.
23. Copy and complete the truth table for a NOT gate.

24. Copy and complete the truth table for a two input AND gate.

inputs		output
A	B	Z
0	0	
0		0
1		0
		1

25. Copy and complete the truth table for a two input OR gate.

inputs		output
A	B	Z
0	0	
0		1
	0	1
		1

26. State the name of the logic gates which have these truth tables and draw their circuit symbols.
(a)

inputs		output
A	B	Z
0	0	1
0	1	0
1	0	0
1	1	0

(b) | inputs | | output |
| :---: | :---: | :---: |
| A | B | Z |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

27. For the following logic circuit, construct the truth table for all possible inputs to A, B and C.

28. For the following logic circuit, construct the truth table for all possible inputs to A, B and C.

29. Design a logic circuit which will operate the electronic system given in the block diagram for a car's interior light. Closing each switch gives a high (1) and a high output is needed to switch on the light. Only one logic gate is needed.

30. Design a logic circuit which will operate the electronic system given in the block diagram for a greenhouse heater.

The temperature sensor gives a high when it is warm and the switch gives a high when it is on.

The buzzer alarm should sound when it gets too cold and the alarm will work only if the switch is on.

Two logic gates are needed.

31. The logic circuit shown gives a high output at \mathbf{Z} only when there are low inputs at \mathbf{A} and \mathbf{B} and a high input at \mathbf{C}.

The circuit can be simplified by using only two gates (one each of AND and NOR).
Show how they are connected to perform the same function.

Analogue Electronics

2.

3.

What is the value of the output voltage $\mathbf{V}_{\mathbf{o}}$ when the input voltage $\mathbf{V}_{\mathbf{i}}$ is
(a) 0 V
(b) 0.2 V
(c) 0.5 V
(d) 1.0 V
(e) -0.4 V
(f) -1.2 V
(g) -0.7 V
(h) 3.0 V
(i) -4.5 V ?

What is the value of the output voltage $\mathbf{V}_{\mathbf{o}}$ when the input voltage $\mathbf{V}_{\mathbf{i}}$ is:
(a) 0 V
(b) 0.02 V
(c) 0.05 V
(d) 95 mV
(e) -0.02 V
(f) -0.12 V
(g) -0.07 V
(h) 1.2 V
(i) -1.5 V ?
4. An op-amp is in the inverting mode. Its input resistor is $20 \mathrm{k} \Omega$ and its feedback resistor is $120 \mathrm{k} \Omega$. The power supply is $9-0-9$ volts.
(a) Calculate the output voltage when the input voltage is:
(i) 0 V
(ii) 0.5 V
(iii) 0.9 V
(iv) -0.6 V
(v) -2.0 V
(vi) 9 V
(b) If the power supply was changed to $15-0-15$ volts, which, if any, of the output voltages calculated in (a) would have a different value?
5. An op-amp in the inverting mode gives an output voltage of -0.6 volts when the input voltage is 0.05 volts. The input resistor is $10 \mathrm{k} \Omega$.

What is the value of the feedback resistor?
6. For an op-amp in the inverting mode, the ratio of the feedback resistor to the input resistor is $50: 1$. Its power supply is $15-0-15 \mathrm{~V}$.

What would be the input voltage when the output voltage had the following values:
(a) -10 V
(b) 7.5 V
(c) 150 mV
(d) -2.5 V
(e) 0 V
(f) $-100 \mu \mathrm{~V}$
(g) 12 V ?
7. An op-amp is in the inverting mode. It has a $10 \mathrm{k} \Omega$ input resistor.

If the input voltage is -1.0 volts, what values of feedback resistor would be needed to obtain output voltages of:
(a) 1.0 V
(b) 2.0 V
(c) 5.0 V
(d) 0.5 V
(e) 10 V
(f) 0.1 V ?
8. The a.c. input to an inverting amplifier has a peak value of $100 \mu \mathrm{~V}$.

If it is amplified by a factor of 500 and the feedback resistor is $100 \mathrm{k} \Omega$, find:
(a) the peak value of the output voltage,
(b) the value of the input resistor.
9.

The feedback resistor $\mathbf{R}_{\mathbf{f}}$ can vary from 0Ω to $50 \mathrm{k} \Omega$. For an input voltage of 0.5 volts, what setting would the feedback resistor have if the output voltage was:
(a) -0.5 V
(b) -1.0 V
(c) -5.0 V
(d) -10 V
(e) -12 V
(f) What would the output voltage be if the feedback resistor was at its maximum setting?
10.

For this inverting amplifier, calculate the value of the output voltage when the switch is:
(a) open
(b) closed.
11. From the following list of resistors, choose two which could be used to construct an inverting amplifier with a gain of:
(a) $10 x$
(b) 100 x
(c) 0.5 x
(d) $4 x$

In each case, state which would be the input and which the feedback resistor.
$1 \mathrm{k} \Omega \quad 5 \mathrm{k} \Omega \quad 10 \mathrm{k} \Omega \quad 20 \mathrm{k} \Omega \quad 500 \mathrm{k} \Omega$
12. An a.c. voltage is applied to the input of an op-amp in the inverting mode, as shown.

Four cycles of the input voltage are shown as they appear on the screen of a CRO connected across the input. Its peak value is 0.5 V .
A CRO is also connected across the output of the amplifier.
Its Y-gain and time base settings are the same as on the first CRO.
(a) Sketch the four cycles of the output voltage as they would appear on the CRO screen and indicate the value of the peak voltage.
(b) If the feedback resistor is changed to $100 \mathrm{k} \Omega$, what would the effect be on the output voltage? Sketch how it would appear on the CRO screen.
[The power supply for the amplifier is $15-0-15 \mathrm{~V}$.]
13.

In this op-amp circuit, the input voltage from a signal generator is displayed on the screen of a CRO connected across the input. Its peak voltage is 5.0 volts. The feedback resistor is variable and can be adjusted from $\mathbf{0}$ to $10 \mathbf{k} \Omega$.
Make four copies of the CRO screen grid and, on them, sketch how the output voltage would appear on the screen of a CRO connected across the output with $\mathbf{R}_{\mathbf{f}}$ at these settings assuming the same time-base and Y -gain settings on the CRO:
(a) $1 \mathrm{k} \Omega$
(b) $2 \mathrm{k} \Omega$
(c) $4 \mathrm{k} \Omega$
(d) $10 \mathrm{k} \Omega$
14. In the op-amp circuit below, an a.c. voltage is connected across the input. The input voltage is displayed on the screen of a CRO. The appearance of the trace is shown when the input voltage has a peak of 0.5 volts.

Make four copies of the CRO screen grid and, on them, sketch how the output voltage would appear on the screen of a CRO connected across the output with the peak input voltage at the following values (assuming that the CRO has the same time-base setting but the Y -gain is 10 times less sensitive):
(a) 0.5 volts
(b) 1.0 volts
(c) 2.0 volts
(d) 3.5 volts.
15. An op-amp, in the inverting mode, is powered by a 9-0-9 volt regulated supply.

The input resistor is $1 \mathrm{k} \Omega$ and the feedback resistor is $100 \mathrm{k} \Omega$.
What is the largest input voltage which can be amplified without saturation occurring?
16. Study the graph of output voltage against input voltage for an inverting amplifier.

> output voltage in volts

(a) Estimate the voltage of the power supply for the amplifier.
(b) Calculate the gain of the amplifier.
17. An inverting amplifier increases the r.m.s voltage of an a.c. input from 0.2 V to 12.0 V .
(a) If the amplifier's input resistor is 500Ω, calculate the value of the feedback resistor.
(b) Apart from the increase in voltage, in what other way is the output voltage different from the input?
18.

For this inverting amplifier:
(a) write down an expression for the output voltage $\mathbf{V}_{\mathbf{0}}$ in terms of the input voltages and three resistors.
(b) In the special case where the resistors are all the same value, what is the relationship between $\mathbf{V}_{\mathbf{0}}, \mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$.
19. For the amplifier shown, which is in the inverting mode, calculate the value of the output voltage when the two input voltages are as stated.

	$\mathrm{V}_{\mathbf{1}}(\mathrm{V})$	$\mathbf{V}_{\mathbf{2}}(\mathrm{V})$
(a)	0	0
(b)	1	1
(c)	-1	-1
(d)	-1	1
(e)	5	4
(f)	-4	5
(g)	6	0
(h)	7	-8

20. For the amplifier shown, which is in the inverting mode, calculate the value of the output voltage when the two input voltages are as stated.

	$\mathbf{V}_{\mathbf{1}}(\mathrm{V})$	$\mathbf{V}_{\mathbf{2}}(\mathrm{V})$
(a)	0	0
(b)	1	1
(c)	-1	-1
(d)	-1	1
(e)	2	4
(f)	-4	5
(g)	6	0
(h)	-7	5

21.

The op-amp is connected in the differential mode.
Write down the expression for calculating the value of the output voltage $\mathbf{V}_{\mathbf{o}}$ in terms of the input voltages $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$, and the resistors input resistors $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{f}}$. (Assume that the output is not saturated.)
22. (a) Draw the circuit diagram for an op-amp connected in the differential mode with these values of resistors:

$$
R_{1}=R_{2}=10 \mathrm{k} \Omega \quad R_{3}=R_{f}=20 \mathrm{k} \Omega .
$$

(b) For this circuit, calculate the value of the output voltage with these input voltages, assuming that the op-amp has a 15-0-15 volt power supply:
(i)

$$
\mathrm{V}_{1}=2.0 \text { volts; } \mathrm{V}_{2}=3.0 \text { volts }
$$

(ii) $\mathrm{V}_{1}=2.5$ volts; $\mathrm{V}_{2}=2.5$ volts
(iii) $\quad \mathrm{V}_{1}=3.0$ volts; $\mathrm{V}_{2}=2.5$ volts
(iv) $\quad \mathrm{V}_{1}=2.5$ volts; $\mathrm{V}_{2}=2.5$ volts
(v)
$\mathrm{V}_{1}=0$ volts; $\mathrm{V}_{2}=3.5$ volts
(vi) $\quad \mathrm{V}_{1}=4.0$ volts; $\mathrm{V}_{2}=0$ volts
(vii)

$$
\mathrm{V}_{1}=2.5 \text { volts; } \mathrm{V}_{2}=5.8 \text { volts }
$$

(viii) $\mathrm{V}_{1}=2.0$ volts; $\mathrm{V}_{2}=12.0$ volts
23. An op-amp with a $15-0-15$ volt power supply, in the differential mode, has these input voltages:

$$
V_{1}=2.0 \text { volts and } V_{2}=3.0 \text { volts. }
$$

(a) Calculate the output voltage when the resistors have the following values:
(i) $\mathrm{R}_{1}=\mathrm{R}_{2}=20 \mathrm{k} \Omega ; \mathrm{R}_{3}=\mathrm{R}_{\mathrm{f}}=20 \mathrm{k} \Omega$
(ii) $\mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \Omega ; \mathrm{R}_{3}=\mathrm{R}_{\mathrm{f}}=20 \mathrm{k} \Omega$
(iii) $R_{1}=R_{2}=20 \mathrm{k} \Omega ; R_{3}=R_{f}=10 \mathrm{k} \Omega$
(iv) $\mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \Omega ; \mathrm{R}_{3}=\mathrm{R}_{\mathrm{f}}=10 \mathrm{k} \Omega$
(v) $\mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \Omega ; \mathrm{R}_{3}=\mathrm{R}_{\mathrm{f}}=50 \mathrm{k} \Omega$
(vi) $\mathrm{R}_{1}=\mathrm{R}_{2}=50 \mathrm{k} \Omega ; \mathrm{R}_{3}=\mathrm{R}_{\mathrm{f}}=10 \mathrm{k} \Omega$
(vii) $\mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \Omega ; \mathrm{R}_{3}=\mathrm{R}_{\mathrm{f}}=100 \mathrm{k} \Omega$
(viii) $R_{1}=R_{2}=1 \mathrm{k} \Omega ; R_{3}=R_{f}=100 \mathrm{k} \Omega$
(b) For each of the answers to part (a), what difference, if any, would there be if the input voltages were reversed?

Speed $=$ distance \div time (for speed of sound)

1. The speed of sound through the air is $340 \mathrm{~m} / \mathrm{s}$. How far would a sound travel in:
(a) 1 s
(b) 2 s
(c) 10.5 s
(d) 0.5 s
(e) 1 ms (millisecond)?
2. A whale's sound takes 50 seconds to travel to another whale which is 75 km away. Calculate the speed of sound through water.
3. How long would a sound take to travel 1530 metres through the air at speed of $340 \mathrm{~m} / \mathrm{s}$?
4. Sound moves through steel at $5000 \mathrm{~m} / \mathrm{s}$.
(a) How far would a sound move through a steel rail in 0.5 s ?
(b) How long would it take a sound to travel along a 10 metre length of steel rod?
5. From a distant thunderstorm, the lightning flash moves so quickly that it reaches you almost at once. The sound of the thunder takes much longer to arrive.
Taking the speed of sound through air as $340 \mathrm{~m} / \mathrm{s}$, how far away is a storm if the gap in time between the flash and bang is 15 seconds?
6. A boy is watching a military display from far off. At one point, a cannon is fired. The boy is surprised to see a puff of smoke come out of the cannon before he hears the bang. In fact, there is a gap of 2.5 seconds.
(a) The boy doesn't study Physics at school. How would you explain to him the reason for what he has observed?
(b) Calculate how far the boy was from the cannon when it was fired.
(Speed of sound $=340 \mathrm{~m} / \mathrm{s}$)
7. A race judge is positioned at the finish line of a 100 m sprint. He sees the puff of smoke from the starter's pistol just before he hears the bang.
Taking the speed of sound through the air as $340 \mathrm{~m} / \mathrm{s}$, calculate the time interval between the appearance of the puff of smoke and the bang.
(State the answer to two significant figures).
8. While walking in the mountains, a girl shouts to her friend who is some way off. She hears a faint echo of her shout after a delay of 1.4 seconds. Her sound has been reflected from a cliff.
How far was the girl from the cliff if the speed of sound was $340 \mathrm{~m} / \mathrm{s}$?
9. The speed of sound through carbon dioxide gas is slower than through air. A sound will travel 135 metres through the gas in half a second. Calculate the speed of sound through carbon dioxide.
10. To measure the speed of sound, a girl stands 150 m away from a large building and bangs two pieces of wood together. Her friend uses a stop-watch to time the interval between the bang and its echo. The watch reads 0.97 s .
(a) What value would the girls calculate for the speed of sound?
(b) Their value is rather low. Can you explain why this might have happened?

Speed $=$ distance \div time (for speed of light)

In these examples, take the speed of light through air or a vacuum (space) to be $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The speed of radio and TV waves is the same as the speed of light in air or a vacuum.

1. Express the speed of light as a 'normal' number in:
(a) metres per second
(b) kilometres per second.
2. Calculate the value of the speed of light through air in miles per second. (1 mile = 1625 metres). Give your answer to the nearest thousand.
3. How far, in metres, would a pulse of light travel through the air in the following times:
(a) 2 s
(b) 3.5 s
(c) 0.1 s
(d) 0.02 s
(e) $10^{-5} \mathrm{~s}$
(f) $4.1 \times 10^{-6} \mathrm{~s}$?
4. How long, in seconds, would a pulse of light take to travel the following distances:
(a) $1.2 \times 10^{9} \mathrm{~m}$
(b) $1.5 \times 10^{8} \mathrm{~m}$
(c) 3000 m
(d) 600 m
(e) 1 light-year?
5. The speed of light is different in different materials. How fast, in metres per second, does it travel through a glass fibre if it takes 2.5 ns to travel along a 50 cm fibre?
($1 \mathrm{~ns}=1$ nanosecond $=10^{-9} \mathrm{~s}$).
6. The distance from the Earth to the Moon can be measured by timing how long a beam of light takes to travel to the Moon and back, bouncing off a mirror on the Moon.
If a pulse of light takes 2.56 s to travel to and from the Moon, what value does this lead to for the Earth - Moon distance?
7. A geostationary satellite, positioned 36000 km above the equator, relays a T.V. signal, by microwave radiation, from a ground station in Scotland to one in the U.S.A. Assuming that the total distance travelled by the microwaves is approximately double the height of the satellite, calculate the time for the signal to reach the ground station in the U.S.A.
8. On television programmes where there is a live 'satellite link' to America and a celebrity in America is being interviewed by a presenter in Britain, there is a noticeable delay between the end of the interviewer's question and the start of the celebrity's answer.
Explain why this happens.
9. Light and heat radiation reaches us from the Sun at the speed of light across the vacuum of space. The Sun is $1.5 \times 10^{11} \mathrm{~m}$ distant. How long, in minutes, does it take the radiation to reach the Earth?
10. In the film '2001 - a Space Odyssey', radio messages are sent from Earth to a manned spacecraft orbiting the planet Jupiter. The messages take 35 minutes to reach the spacecraft. How far is Jupiter from the Earth, in kilometres?
11. The distance from Glasgow to London is about 650 km . If they were directly linked by optical fibre, how long would a telephone message take to travel between the cities? (Speed of light though glass is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$.)

Wave speed, frequency, wavelength, period

1. Use the formula 'wave speed $=$ frequency x wavelength' $(v=f \lambda)$ to calculate the value of the missing quantities in the table.

$\mathbf{v}(\mathbf{m} / \mathbf{s})$	$\mathbf{f}(\mathbf{H z})$	$\boldsymbol{\lambda}(\mathbf{m})$
-	10	2.5
-	50	0.02
-	10^{5}	10^{-3}
340	170	-
3×10^{8}	2×10^{6}	-
2.4	0.5	-
310	-	0.5
3×10^{8}	-	3.33

[In the questions that follow, use the relationships: (1) frequency = number of cycles per second and (2) frequency $=1 \div$ period]
2. How many waves are made in 3 minutes by a pleasure pool's wave machine if its frequency is 0.25 hertz?
3. A tuning fork vibrates at 256 hertz. How many times does one of its prongs vibrate back and forth in 5 seconds?
4. The mains electricity in some countries has a frequency of 60 Hz .

Calculate the period of one cycle of the supply.
5. With the time base of a CRO set at $0.5 \mathrm{~ms} / \mathrm{cm}$, three cycles of an alternating voltage, displayed on the screen, occupy 6.0 cm , horizontally.
Calculate the frequency of the voltage.
6. A CRO has the time base set at $10 \mathrm{~ms} / \mathrm{cm}$. How many centimetres would one cycle of a 25 Hz signal occupy on the screen, horizontally?
7. What is the time for one cycle of an alternating voltage with a frequency of 50 hertz? What term is used for this time?
8. Calculate the frequency of a water wave which has a wavelength of 1.5 m and travels a distance of 10 metres in 5.0 seconds.
9. A water wave, travelling at $2.5 \mathrm{~m} / \mathrm{s}$, has a wavelength of 50 cm .
What are the wave's:
(a) frequency
(b) period?
10. What is the period of a wave whose frequency is 4 Hz ?
11. On a stormy day, a girl counts the number of wave crests breaking on the shore and finds that there are 60 in 4 minutes. Calculate the water waves' frequency in hertz (waves per second.)
12. What is the frequency of the tuning fork which makes the musical note one octave above 'middle C' if its prongs vibrate 2560 times in 5 s?
13. What is the wavelength of a 200 Hz sound wave if the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$?
14. Calculate the difference in wavelength between sounds of frequency 567 Hz and 618 Hz in air where the speed of sound is $340 \mathrm{~m} / \mathrm{s}$.
15. Sound waves travel at $1500 \mathrm{~m} / \mathrm{s}$ through water.

Calculate the wavelength of a 300 Hz sound made under water.
16. What is the speed of sound through an aluminium rod if a sound vibration of frequency 13 kHz has a wavelength of 40 cm ?
17. An ultrasound generator produces sounds of frequency 40 kHz . Calculate:
(a) the period of the sound waves
(b) their wavelength, in microseconds, if the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.
18. Medical ultrasounds of 2.0 MHz are generated and sent through a person's abdomen. If the speed of sound in the abdominal tissues is $1500 \mathrm{~m} / \mathrm{s}$, calculate the wavelength of the ultrasound waves inside the person. Answer in millimetres.
19. A sound has a wavelength of 60 cm in air where its speed is $340 \mathrm{~m} / \mathrm{s}$. What would the wavelength of the sound become if it passed into water, where its speed is $1500 \mathrm{~m} / \mathrm{s}$?
20. Water waves in a ripple tank are found to measure 2.0 cm between successive crests. The vibrating bar which generates the waves is set to make 25 waves in 5 s . Calculate the speed of the waves.
21. As water waves approach the shore, the water becomes shallower and the wave speed decreases. What happens to the wavelength and frequency of the waves?
22. A boy makes waves on a long rope by attaching one end to a wall and moving the other end up and down rapidly three times a second.
At one instant, just as the first part of the wave reaches the wall, the wave on the rope appears as shown.

Calculate: (a) the time taken to travel from the boy's hand to the wall.
(b) the speed at which the wave moves along the rope.
(c) the wavelength of the wave
23. By making measurements on this page, find the amplitude and wavelength of the wave drawn below to actual size.

Note: in questions 24-35, take the speed of waves of the electromagnetic spectrum to travel through the air at $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
24. What is the frequency of a wave of red light in the air if its wavelength is $6.8 \times 10^{-7} \mathrm{~m}$?
25. Calculate the wavelength of BBC Radio 4 which broadcasts on a frequency of 198 kHz .
26. Certain X-rays have a frequency of $1.0 \times 10^{19} \mathrm{~Hz}$. Calculate their wavelength in the air.
27. BBC Radio 5 is broadcast on 330 m on the Medium Wave. Calculate the frequency of the carrier wave in kilohertz.
28. What is the wavelength of a radio station which sends out radio waves of frequency 1.15 MHz?
29. A certain radio station broadcasts on a frequency of 101.7 MHz . Calculate the wavelength of the radio wave.
30. Calculate the frequency, in kilohertz, of a radio station which broadcasts on the Medium Wave with a wavelength of 1053 m .
31. An orange street lamp gives out light which has a very short wavelength of around $6.0 \times 10^{-7} \mathrm{~m}$. What is the frequency of the light?
32. An X-ray tube produces waves of frequency $2.0 \times 10^{18} \mathrm{~Hz}$. Calculate the wavelength of the X-rays.
33. Calculate the wavelength and period of microwaves which have a frequency of $10^{11} \mathrm{~Hz}$ (that is, $1.0 \times 10^{11} \mathrm{~Hz}$), when travelling through the air.
34. A radio station broadcasts on $250 \mathrm{~m}, 1200 \mathrm{kHz}$.

Show that the radio wave travels through the air at $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
35. Extra Low Frequency (ELF) waves are used to communicate with submarines.

Calculate the wavelength in air of an ELF wave of frequency 1.5 kHz . Answer in kilometres.

Wave properties

1. Copy and complete the following diagrams by drawing the position of the wave fronts after they have been reflected from the barriers:

(d)

(b)

(e)

parabolic
mirror
(c)
(f)

2. When parallel wave fronts of water waves reflect at any angle from a straight barrier, what is the effect on: (a) the wavelength of the waves, (b) the frequency of the waves, (c) the speed of the waves and (d) the shape of the wave fronts?
3. When parallel wave fronts of water waves reflect from a concave barrier, what is the effect on: (a) the wavelength of the waves, (b) the frequency of the waves, (c) the speed of the waves and (d) the shape of the wave fronts?
4. What is the name for the point to which wave fronts converge after being reflected from a concave (parabolic) barrier?
5. The diagram shows circular wave fronts approaching a concave (parabolic) barrier, having been generated at the barrier's focal point. Draw a diagram to show what happens to the wave fronts after reflection from the barrier.

6. Copy and complete the following diagrams by drawing the position of the water wave fronts after they have been diffracted by passing through the gaps in the barriers or passing the obstacles:
(a)

(b)

(d)

(e)

(c)

(g)

7. If plane water waves undergo diffraction by passing through a gap in a barrier, compare the effect when the gap width is: (a) about the same size as the wavelength (b) much larger than the wavelength.
8. Draw a wave diagram to show what happens when parallel water waves pass an obstacle that is: (a) about the same size as the wavelength (b) much larger than the wavelength.
9. The wave properties refraction and diffraction are often confused.

Explain the difference between them by giving an example of the effect of each on water waves.
10. Copy and complete the following diagrams by drawing the position of the water wave fronts after they have been refracted in slowing down moving from deep to shallower water.

(c) deep

11. The diagram shows two waves arriving at the same point out of step (or out of phase) with each other.

Draw a diagram to show the combined wave and state the name of this wave effect.
12. The diagram shows two waves arriving at the same point in step (or in phase) with each other.

Draw a diagram to show the combined wave and state the name of this wave effect.

Waves and Interference

1. How does the frequency of a wave compare with the frequency of the source which produces it?
2. What is meant by the period of a wave?
3. State the relationship between the frequency of a wave and its period.
4. A water wave has a period of 2.0 s . Calculate its frequency.
5. A bar in a ripple tank vibrates at 10 Hz and generates water waves.
(a) What is the frequency of the water waves?
(b) What is the period of the water waves?
6. How does the energy of a wave affect its amplitude?
7. The questions refer to the four 'waves' in the following diagram. They are all travelling through the same medium at the same speed.
A

B

C

D

(a) Which wave has the largest amplitude?
(b) Which wave has the largest frequency?
(c) Which wave has the shortest period?
(d) Which two waves have the same frequency but different amplitudes?
(e) Which two waves have the same amplitude but different frequencies?
8. Out of the waves properties reflection, refraction and interference, which is a test for a wave? Explain why the other two properties could be shown by particles.
9. Interference is easily demonstrated when two coherent sources of waves overlap. Explain what is meant by the term 'coherent'.
10. (a) Which diagram shows constructive interference between two waves of the same frequency?

Diagram A

Diagram B

(b) What term is used for the interference shown in the other diagram?
(c) In which diagram are the waves said to be in phase?
(d) In which diagram are the waves said to be out of phase?
11. Copy the wave diagram and, on it, mark (a) one wavelength and (b) the amplitude.

12. Two loudspeakers emit coherent sound waves of the wavelength 50 cm .

For each of the following positions of point \mathbf{C}, state whether it is a point of constructive or destructive interference of the sound waves.
(a) $\mathrm{AC}=\mathrm{BC}=50 \mathrm{~cm}$
(b) $A C=50 \mathrm{~cm} ; B C=100 \mathrm{~cm}$
(c) $\mathbf{A C}=25 \mathrm{~cm} ; B C=50 \mathrm{~cm}$
(d) $A C=100 \mathrm{~cm} ; B C=75 \mathrm{~cm}$
(e) $A C=50 \mathrm{~cm} ; \quad B C=150 \mathrm{~cm}$
(f) $A C=50 \mathrm{~cm} ; B C=175 \mathrm{~cm}$
(g) $\mathbf{A C}=67.5 \mathrm{~cm} ; \quad B C=67.5 \mathrm{~cm}$
13. Two loudspeakers emit coherent sound waves of frequency 170 Hz in air where the speed of sound is $340 \mathrm{~m} / \mathrm{s}$.

B

For each of the following positions of point \mathbf{C}, state whether it is a point of constructive or destructive interference of the sound waves.
(a) $A C=B C=100 \mathrm{~cm}$
(b) $\quad A C=50 \mathrm{~cm} ; B C=150 \mathrm{~cm}$
(c) $\quad \mathrm{AC}=75 \mathrm{~cm} ; B C=275 \mathrm{~cm}$
(d) $\quad A C=290 \mathrm{~cm} ; \quad B C=190 \mathrm{~cm}$
(e) $\quad A C=200 \mathrm{~cm} ; \quad B C=200 \mathrm{~cm}$
14. Two loudspeakers emit coherent sound waves in air where the speed of sound is $340 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& \mathrm{AC}=\mathrm{BC}=50 \mathrm{~cm} \\
& \mathrm{BD}=52 \mathrm{~cm} \\
& \mathrm{AD}=48 \mathrm{~cm} \\
& \mathrm{BE}=58 \mathrm{~cm}
\end{aligned}
$$

A point of constructive interference is detected at point \mathbf{C} and the nearest point of destructive interference is at point D.
(a) Use the distances shown in the diagram to calculate the wavelength of the sound waves.
(b) Calculate the frequency of the signal generator driving the loudspeakers.
(c) Point \mathbf{E} is the first point of constructive interference after \mathbf{C}.

Calculate the distance AE.

Properties of Light

1. Copy and complete these ray diagrams, each showing a ray of light incident on a plane mirror, by drawing in the reflected ray at the correct angle to the normal:

(c)

2. Complete this statement for a ray of light reflected from a plane mirror:
angle of incidence $=$ angle of \qquad
3. For each of the ray diagrams which show three rays of light incident on a plane mirror, copy and complete the diagram by drawing in the reflected rays.

Parallel rays

Diverging rays
4. (a) In Q3, in which diagram do the reflected rays form a real image?
(b) In which diagram do the reflected rays form a virtual image?
5. Copy and complete the ray diagram to show how the plane mirror makes a virtual image of the object (arrow.)

What do you notice about the distance of the image from the mirror compared to the distance of the object from the mirror?
6. The image formed of an object by a plane mirror is said to be 'laterally inverted'.
(a) What is meant by the image being 'laterally inverted'?
(b) Complete the ray diagram, of a plane mirror viewed from above, to illustrate that the image of the object is laterally inverted.

7. Copy and complete the ray diagrams, which each show three parallel light rays incident on a curved (parabolic) mirror, by drawing in the reflected rays.
(a)

(b)

(a)

(b)

8. In Q7, which mirror forms a real image and which a virtual image?
9. The diagram shows a ray of light incident on a transparent block of material.

Copy and complete the diagram to show the position of the reflected ray at surface \mathbf{A} and the refracted ray at surface B.
10. What happens to the direction of a ray of light entering water or glass from the air if it is not at 90° to the surface?
11. Copy and complete the diagram, which shows three rays of light incident on the surface of water from the air at different angles to the normal, by drawing in the refracted rays of light.

12. In each diagram, a ray of light is shown travelling through glass and meeting the boundary with air. The critical angle at the boundary is 42°. Copy and complete each diagram to show what happens to the ray of light.

13. What name is used for the behaviour of light travelling through glass and meeting its boundary with air at angle greater than the critical angle?
14. Complete the following diagram to show how a ray of light can travel through a thin piece of glass without escaping into the surrounding air.

15. Copy and complete the ray diagrams, which show rays of red light and blue light incident on one edge of a triangular glass prism, by drawing the refracted rays in the glass and the rays which emerge out of the glass into the air.

16. When light is refracted by passing from air into glass at an angle other than 90°, which colour of light is refracted through the bigger angle, red or blue?
17. Complete this statement about refraction: "the ratio of the sine of the angle of incidence to the sine of the angle of refraction is a \qquad ".
18. What happens to the speed of a ray of light when it enters a transparent material such as glass from the air?
19. A ray of light makes an angle of incidence of 40° with the normal between air and a liquid. The angle of refraction in the liquid is 280 .
Calculate the value of the refractive index of the liquid.
20. The critical angle for a particular kind of glass is $47{ }^{\circ}$. Describe what would happen to a ray of light travelling through the glass and incident on its boundary with the air at:
(a) 490 to the normal,
(b) 41° to the normal.
21. The index of refraction of a kind of glass for a certain wavelength of red light is 1.51 . It is 1.55 for violet. A ray of white light is incident on a prism made of the glass at 30° to the normal. Calculate the angle between the red and violet rays in the glass.
22. Calculate the speed of light through glass with a refractive index of 1.5. (Speed of light in a air $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.)
23. Calculate the critical angle for water which has a refractive index of 1.33.
24. Calculate the wavelength of light in water of absolute refractive index 1.33 which has a wavelength of 347 nm in glass $(\mathrm{n}=1.50)$.
25. A ray of monochromatic light, travelling through glass, is incident on the glass/air boundary at an angle of 60° to the surface of the glass. Calculate the angle it makes with the normal in the air, if the refractive index of the glass is 1.52 .
26. Above what angle to the normal will light be totally internally reflected striking the surface of glass of absolute refractive index 1.49 ?
(Assume that the glass is surrounded by air.)
27. A ray of monochromatic light, travelling through air, makes an angle of 30° with the surface of a rectangular block of a certain type of transparent plastic. It makes an angle of 53° with the surface inside the plastic.
What is the value of the plastic's refractive index?
28. Calculate the critical angle for diamond. (Refractive index of diamond, ' n ' $=2.4$).
29. Light, moving through water $(\mathrm{n}=1.33)$, strikes a block of glass $(\mathrm{n}=1.51)$ at an angle of 40° to the normal.

What angle does the light make to the normal inside the glass?
30. In entering a transparent material from the air, the wavelength of a laser's light decreases from 600 nm to 451 nm . Calculate the refractive index of the material.
31. The critical angle of a particular type of glass is 38.4°. What is its refractive index?
32. At what speed would light travel in glass of refractive index 1.54 ?
33. A ray of light enters an oblong glass block at an angle of 40° to the surface of the glass. The refracted ray makes an angle of 61° to the surface of the glass.

What is the refractive index of the glass?
34. Two rays of light, travelling through glass ($n=1.51$) which is under water $(n=1.33)$, strike the surface at angles to the normal of 59° and 63° respectively.

Determine what happens to each ray.
35. A tube of glass of refractive index 1.65 is surrounded by glass of refractive index 1.51. Calculate the critical angle for light travelling along the tube and incident on the boundary between the two types of glass.
36. At what speed does light travel through water of refractive index 1.33 ?
37. A thin ray of monochromatic light enters a block of pure ice at an angle of 42.0° to the normal from the air. If the refracted angle in the ice is 30.7°, calculate the critical angle for ice?
38. The refractive index of glass for light of wavelength 452 nm in air is 1.58 .

What are the speed and wavelength of the light in the glass?
39. The critical angle for perspex is 42.5°.

Calculate its refractive index (to 3 significant figures.)
40. An optical fibre has a refractive index of 1.52 and is surrounded by a cladding material, refractive index 1.43.

Calculate the minimum angle for which light can be totally internally reflected at the boundary between the two materials.
41. Light of wavelength $5.9 \times 10^{-7} \mathrm{~m}$, travelling through water $(\mathrm{n}=1.33)$, enters a block of glass $(n=1.60)$. What are its wavelength and frequency in the glass?
42. Light of frequency $4 \times 10^{14} \mathrm{~Hz}$ travels from air into glass with a refractive index of 1.60 . What are the speed, wavelength and frequency of the light in the glass?
43. The diagrams each show three parallel rays of light incident on a converging lens.

Copy and complete the diagrams to show how the lens refracts the rays.
Use a ruler to draw the rays.

44. The diagrams each show three parallel rays of light incident on a diverging lens. Copy and complete the diagrams to show how the lens refracts the rays.

Use a ruler to draw the rays.

45. The diagrams show three parallel rays of light incident on two converging lenses of different optical powers. Copy and complete the diagrams to show how each lens brings the rays of light to a focus.

46. In Q45, which lens' power, measured in dioptres, would be the larger number?
47. Calculate the focal lengths, in centimetres, of these converging lenses with the optical powers given:
(a) +20 D
(b) +2.5 D
(c) +10 D
(d) + 14 D
(e) +2.0 D
48. Calculate the power, in dioptres, of a converging lens with a focal length of 40 cm .
49. What is the power of a lens if parallel rays of light are brought to a focus at a distance of 20 cm from the centre of the lens on the principal axis?
50. Which lens has the larger optical power: a lens of focal length 10 cm or one with a focal length of 50 cm ?
51. Why is the focal length of a diverging lens called said to be 'virtual'?
52. A lens has a focal length of -10 cm .

What does the negative sign indicate about the lens?
53. A diverging lens has a focal length of -15 cm .

Draw a ray diagram with parallel rays passing through the lens and show that the rays do not pass through the focal point.
54. A converging lens has a power of + 20 D .
(a) How far from the centre of the lens is the focal point of the lens?
(b) Draw a ray diagram to show how parallel rays of light, which are also parallel to the principal axis, pass through the focal point.
55. The ray diagram shows parallel rays of light passing through a converging lens.

Copy and complete the diagram to show what happens when the rays are not parallel to the principal axis.
56. The ray diagram shows rays of light passing through a converging lens.

Copy and complete the diagram to show where the rays come to a focus. [' F ' is the principal focus of the lens.]
57. The ray diagram shows rays of light passing through a converging lens.

Copy and complete the diagram to show where the rays come to a focus.
[' F ' is the principal focus of the lens.]
58. The ray diagram shows rays of light passing through a diverging lens.

Copy and complete the diagram to show where the rays appear to come from after passing through the lens.
' F ' is the principal (virtual) focus of the lens.
59. The ray diagram shows rays of light passing through a diverging lens.

Copy and complete the diagram to show where the rays appear to come from after passing through the lens.
' F ' is the principal (virtual) focus of the lens.
60. Complete the ray diagram which shows a converging and a diverging lens of equal and opposite powers. The principal focus of the converging lens is at the same point as the principal focus of the diverging lens.

Grating equation

[Note: $1 \mathrm{~nm}=10^{-9} \mathrm{~m}$]

1. In the 'grating equation', $\mathbf{n} \lambda=\mathbf{d} \sin \theta$, state what each letter represents.
2. A diffraction grating has 300 lines per millimetre. Calculate the value of 'd', the line separation in: \quad (a) millimetres \quad (b) metres.
3. A diffraction grating has 15000 lines per inch.

Calculate the value of ' d ', the line separation in:
(a) millimetres
(b) metres
[Take 1 inch to be equal to 2.5 cm .]

In the examples which follow, use the 'grating equation', $\boldsymbol{n} \lambda=\mathbf{d} \sin \boldsymbol{\theta}$.
4. A diffraction grating has $\mathrm{d}=1.67 \times 10^{-6} \mathrm{~m}$. A red line in the first order spectrum of cadmium is observed at an angle of 22.7°.
(a) Calculate the wavelength of the red light in nanometres.
(b) At what angle would the line be found in the second order spectrum?
5. A diffraction grating has $d=1.50 \times 10^{-6} \mathrm{~m}$. A green line in the second order spectrum of mercury is observed at an angle of 46.7°.
(a) Calculate the wavelength of the green light in nanometres.
(b) At what angle would the line be found in the first order spectrum?
6. A diffraction grating has 300 lines per mm .
(a) At what angle would the violet line in the spectrum of mercury be observed in the first order spectrum? $\quad(\lambda=405 \mathrm{~nm})$
(b) At what angle would this line be found in the second order spectrum?
(c) Which of these lines would be found in the second order spectrum at 20.30:
yellow 579 nm green 546 nm blue-violet 436nm?
7. A diffraction grating forms a spectrum of gaseous sodium. The yellow doublet ($\lambda=589 \mathrm{~nm}$) is observed through a spectrometer telescope in the second order spectrum at an angle of 70.5°. Calculate
(a) the grating's line spacing in metres and
(b) the number of lines per millimetre in the grating.
8. A diffraction grating has 600 lines per mm .
(a) Calculate the angle, in the second order spectrum, between the two lines of the sodium doublet ($\lambda=589.0 \mathrm{~nm}$ and 589.6 nm).
(b) What difference, if any, would be made to this angle, if a grating with 800 lines per mm were used instead?

Inverse square law

1. (a) Write down the relationship between the intensity of radiation from a point source of light and the distance from the source.
(b) Explain why this relationship does not hold for an extended source, such as a fluorescent strip lamp.
2. Sketch the shape of the graphs which would result if:
(a) intensity was plotted against distance and
(b) intensity was plotted against 'one divided by the square of the distance'.
3. The table has the results of an experiment to measure how the intensity of light varies with distance from a point source of light.

Distance in cm	5	10	15	20	25	30
Intensity in units	80	-	8.9	5.0	-	2.2

(a) Two 'intensity' readings are missing from the table: calculate what they should be.
(b) Construct a graph to show what the relationship is between intensity and distance.
4. A radioactive source emits gamma rays. It is small enough to be considered to be a point source. The count rate on a detector at a distance of 1 metre from the source is measured as 64000 c.p.m. The background count can be ignored.
(a) What would be the count rate at distances of:
(i) 2 m
(ii) 5 m
(iii) 50 cm ?
(b) At what distance from the source would the count rate be 4000 c.p.m.?
5. A man working at a laboratory bench for 4 hours receives an absorbed dose from gamma radiation of $600 \mu \mathrm{~Gy}$. The cause of this is a small (point) gamma source which is 2 metres from his bench. The man wishes to move the position of the gamma source so that the absorbed dose over the same time is only $150 \mu \mathrm{~Gy}$.
How far from the bench must the source be placed?
6. A small (point) gamma source is in the centre of a laboratory. Four people are working at different parts of the laboratory. Smith, who is 4 metres from the source, receives a dose equivalent rate of $32 \mu \mathrm{Svh}^{-1}$.
(a) Jones is only 2 metres from the source.

What would be her dose equivalent rate?
(b) Burke's dose equivalent rate is just $8 \mu \mathrm{Svh}^{-1}$. How far is he from the source?
(c) Hare's dose equivalent rate is half of Burke's.

How far is she from the source?

Specific Heat Capacity

1. In the table below, calculate the value of the missing quantity in each row, using the formula for the heat required to raise the temperature of a substance:

$$
E=\mathrm{cm} \theta \text { or } E=\mathbf{c m} \Delta \mathbf{T}
$$

heat (J)	shc (J/kgK)	mass (kg)	temp. change (K)
-	4200	2	10
-	4200	0.5	40
8000	400	1	-
2.5×10^{4}	1000	0.5	-
90000	450	-	10
10500	2100	-	20
2.1×10^{5}	-	10	5
67500	-	5	30

2. An experiment to measure the specific heat capacity of water, 'c', gave these results: mass of water $=500 \mathrm{~g}$; heat added $=46200 \mathrm{~J}$; temperature rise $=21 \mathrm{C}^{\circ}$ Calculate the value obtained for ' c '.
3. The specific heat capacity of ice is $2100 \mathrm{~J} / \mathrm{kgK}$. A 1.8 kg block of ice, removed from a freezer at a temperature of $-18^{\circ} \mathrm{C}$, is placed in a fridge which has a temperature of $0^{\circ} \mathrm{C}$. After a few hours, the ice has warmed up to the fridge temperature.
How much heat has the block absorbed?
4. The specific heat capacity of air is $1000 \mathrm{~J} / \mathrm{kgK}$.
(a) How much heat would be needed to raise the temperature of the air in a room by 5 celsius degrees, if the room measures $4 \mathrm{~m} \times 4 \mathrm{~m} \times 3 \mathrm{~m}$?
(Density of air $=1 \mathrm{~kg} / \mathrm{m}^{3}$.)
Assume that the room has no furniture and that the walls absorb no heat.
(b) How long would a 1 kW convection heater take to do the heating?
5. A carpet cleaning machine holds 40 litres of water. It is filled with water at $15^{\circ} \mathrm{C}$ and the water is heated by a 3 kW element to a temperature of $70^{\circ} \mathrm{C}$.
(a) How much heat is added to the water? (Mass of 1 litre $=1 \mathrm{~kg}$; s.h.c. $=4200 \mathrm{~J} / \mathrm{kgK}$)
(b) Assuming no heat loss to the machine or air, what is the least time the heater takes to heat the water?
6. 75600 J of heat are needed to raise the temperature of a 2 kg block of ice removed from a freezer at $-18^{\circ} \mathrm{C}$ to its melting point.
Calculate the specific heat capacity of ice suggested by these figures.
7. Calculate the specific heat capacity of a metal if 3 kg of the metal experiences a temperature rise of $25 \mathrm{C}^{\circ}$ when heat is supplied to it at a rate of 60 watts for 10 minutes, and a total of 3000 joules escapes to the surroundings.
8. Assuming no heat is lost to the air or other surroundings, what temperature would 490 g of water reach, starting at $15^{\circ} \mathrm{C}$, if a 60 watt heater delivered heat to it for 20 minutes? (Specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kgK}$)
9. Calculate the heat needed to raise the temperature of a 2.5 kg block of ice to its melting point, if it is stored in a freezer at $-20^{\circ} \mathrm{C}$. ($\mathrm{c}_{\text {ice }}=2.1 \mathrm{~kJ} / \mathrm{kgK}$)
10. The specific heat capacity of iron is $440 \mathrm{~J} / \mathrm{kgK}$.

How much heat energy would be needed to raise the temperature of a piece of mass 800 g by 120 celsius degrees?
11. Copper has a specific heat capacity of $390 \mathrm{~J} / \mathrm{kgK}$. A 20 g piece of copper at a temperature of $120^{\circ} \mathrm{C}$ is dropped into a large tank of water which is at $15^{\circ} \mathrm{C}$. How much heat does the water gain as the copper cools down to the tank's temperature?
12. It takes 260 joules of heat to raise the temperature of 40 g of gold by 50 celsius degrees. From these figures, calculate the specific heat capacity of gold.
13. In the term 'specific heat capacity', what is meant by the word 'specific'?
14. 100 g of hot water at $80^{\circ} \mathrm{C}$ is thoroughly mixed with 200 g of water at $20^{\circ} \mathrm{C}$. Assuming that no heat escapes to the surroundings, calculate the temperature of the mixture.
[Hint: assume that the heat lost by the hot water equals the heat gained by the cold water.]
15. How long would a 40 watt heater take to raise the temperature of 200 g of water from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, assuming that all of the heat supplied by the heater is absorbed by the water? (Take $\mathrm{c}_{\text {water }}=4200 \mathrm{~J} / \mathrm{kgK}$.)
16. A 40 gram piece of iron at a temperature of $120^{\circ} \mathrm{C}$ is dropped into a beaker containing 100 grams of water at $20^{\circ} \mathrm{C}$. Assuming that all the heat lost by the iron in cooling down is absorbed by the water is heating up, find the temperature reached by the water, to the nearest degree.
$\left(\right.$ Take $\mathrm{c}_{\text {water }}=4200 \mathrm{~J} / \mathrm{kgK}$ and $\left.\mathrm{c}_{\text {iron }}=440 \mathrm{~J} / \mathrm{kgK}.\right)$
17. An electric kettle's element is rated at 2400 W . The kettle is filled with 1.2 kg of water from a cold tap at $10^{\circ} \mathrm{C}$. Assuming that no heat escapes to the surroundings, how long would the kettle take to raise the water's temperature to boiling point? (Take $\mathrm{C}_{\text {water }}=4200 \mathrm{~J} / \mathrm{kgK}$)
18. A 100 gram solution of sea water is heated from $24^{\circ} \mathrm{C}$ at the rate of 50 watts. After 10.4 minutes, the solution reaches boiling point. If no heat has escaped to the surroundings, calculate the boiling point of sea water suggested by these figures.
('c' for sea water $=3900 \mathrm{~J} / \mathrm{kgK}$)
19. A typical bath requires 90 kg of hot water at $50^{\circ} \mathrm{C}$. If the water had to be heated to this temperature during the winter from $6^{\circ} \mathrm{C}$, calculate:
(a) how much heat would be needed and
(b) how long, to the nearest minute, a 5 kW heater would take to supply the heat, assuming no loss to the surroundings. ('c' for water $=4200 \mathrm{~J} / \mathrm{kgK}$)

Specific Latent Heat

1. In the table below, calculate the value of the missing quantity in each row, using the formula for the heat required to change the state of a substance:

$$
\mathbf{E}=\mathbf{m l}_{\mathbf{f}} \text { or } \mathbf{E}=\mathbf{m l}_{\mathbf{v}} .
$$

heat (J)	mass (kg)	specific latent heat capacity $(\mathbf{J} / \mathbf{k g})$
-	2	334000
-	0.5	334000
3.34×10^{6}	-	334000
904000	-	2260000
-	2.5	3.34×10^{5}
-	0.2	2.26×10^{6}
455000	3.5	-
5800	0.02	-

For questions 2-8, use the following data:
specific latent heat of fusion of ice $=3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
specific latent heat of vaporisation of water $=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
2. How much heat would be needed to totally melt a 3.5 kg block of ice at $0^{\circ} \mathrm{C}$ into water at $0^{\circ} \mathrm{C}$?
3. How much heat would a freezer need to extract from 600 grams of water in a container, once it was cooled to its freezing point, to turn it completely into ice at $0^{\circ} \mathrm{C}$?
(Answer to 3 significant figures.)
4. The water in a kettle on a gas stove reaches boiling point. How much heat will have been added to the water in the kettle once 400 grams of water have turned into steam?
5.

The temperature of the water in a boiling kettle is measured and found to be $100^{\circ} \mathrm{C}$.

The thermometer is now held inside the kettle's spout to measure the temperature of the steam.

What would its temperature be?
6. How many grams of ice would melt from a large block of ice at its melting point if 6780 joules of heat were absorbed from the air?
7. An electric kettle brings its water to boiling point but fails to switch off. What mass of water will turn to steam if a further 113 kilojoules of heat are supplied from the kettle's element?
8. A steam generator's element is rated at 2.5 kW . Once it has brought its water to boiling point, the element continues to add heat to it.
(a) What mass of water will turn to steam if the element adds a further 125 kJ to the water? (Answer to the nearest gram.)
(b) Assuming that all the heat is absorbed by the water, how long would the element take to supply that quantity of heat?
9. A block of ice sitting in a room with an air temperature of $10^{\circ} \mathrm{C}$ has a concave dent in its top surface that fills with melt water from the block.

The temperature of the water is measured.
(a) What would be the temperature of the water?
(b) Explain your answer to (a).
10. It is often said that a scald from steam is much worse than a scald from the same mass of boiling water. Why is this?
11.

The cloud of 'steam' in the diagram of a boiling kettle is not really steam at all.
(a) What is it?
(b) Where, in the diagram, would you put a label to indicate the presence of actual steam?
12. It takes 320 J of heat to melt 5 grams of gold, at its melting point.

Calculate the specific latent heat of fusion of gold.
13. If liquid mercury is heated to $357^{\circ} \mathrm{C}$, it boils into its vapour. It takes 5880 J to vaporise 20 grams. Use these figures to calculate mercury's specific latent heat of vaporisation.
14. Which requires more heat: boiling 20 g of water at $100^{\circ} \mathrm{C}$ into steam or melting 135 g of ice at $0^{\circ} \mathrm{C}$?
15. Which liquid has the larger specific latent heat of vaporisation: vinegar, which needs 195 kJ to vaporise 500 g at its boiling point, or benzene, which requires 320 kJ to boil away 800 g ?
16. A container of water, which has been heated to a temperature of $40^{\circ} \mathrm{C}$, is placed in a freezer with a cabinet temperature of $-18^{\circ} \mathrm{C}$. An electronic thermometer measures the temperature of the container's contents and sends regular readings to a data capture device. The data is displayed on a computer as the temperature-time graph shown below.

(a) Explain what is happening to the cnntainer's contents in the three distinct sections of the curve.
(b) What is the freezing point of the water?
(c) Predict and explain what temperature the container's contents will eventually reach.
17. A test tube of naphthalene (moth balls) is removed from a water bath that has melted the substance and taken its temperature to $100^{\circ} \mathrm{C}$. Its temperature is recorded every minute for 20 minutes in a laboratory where the air temperature is $24^{\circ} \mathrm{C}$.

Time (mins)	0	1	2	3	4	5	6	7	8	9	10
Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$	100	92	87	82	81	81	81	81	81	81	81
Time (mins)	11	12	13	14	15	16	17	18	19	20	
Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$	81	81	81	81	80	73	67	62	58	54	

(a) Plot a line graph of temperature against time for the naphthalene over the 20 minute period.
(b) From the graph, estimate the melting point of naphthalene.
(c) Predict the temperature eventually reached by the naphthalene if left in the same surroundings.

Density $=$ mass \div volume ($\rho=\mathbf{m} / \mathrm{V}$)

1. Use the formula 'density $=$ mass \div volume' or $\rho=\mathbf{m} / \mathbf{V}$ to calculate the value of the missing quantities in the table.

$\boldsymbol{\rho}\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)$	$\mathbf{m} \mathbf{(k g})$	$\mathbf{V}\left(\mathbf{m}^{\mathbf{3}}\right)$
-	100	0.1
-	2.86	2.00
2.0×10^{-4}	1.5	-
0.80	4.0	-
1000	-	0.05
800	-	4×10^{5}

2. $\quad 68.0 \mathrm{~g}$ of mercury occupy a volume of $5 \mathrm{~cm}^{3}$.

Calculate the density of mercury in: (a) $\mathrm{g} / \mathrm{cm}^{3}$ and (b) $\mathrm{kg} / \mathrm{m}^{3}$.
3. A quantity of metal has the following measurements:

$$
\text { mass }=88.4 \mathrm{~g} ; \text { volume }=6.5 \mathrm{~cm}^{3} .
$$

Calculate its density in (a) $\mathrm{g} / \mathrm{cm}^{3}$ and (b) $\mathrm{kg} / \mathrm{m}^{3}$. Identify the metal.
4. A piece of wood with a mass of 30 grams has a volume of $25 \mathrm{~cm}^{3}$.

Calculate its density in $\mathbf{k g} / \mathbf{m}^{3}$.
5. What volume would 30 g of ethanol occupy if its density is $0.79 \mathrm{~g} / \mathrm{cm}^{3}$?
6. What volume would 30 g of mercury occupy if its density is $13.6 \mathrm{~g} / \mathrm{cm}^{3}$?
7. A lump of nickel with a mass of 267 grams has a volume of $30 \mathrm{~cm}^{3}$. Calculate its density in $\mathrm{kg} / \mathrm{m}^{3}$.
8. The density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$.

What weight of mercury would fill a $250 \mathrm{~cm}^{3}$ container? (Take g = $10 \mathrm{~N} / \mathrm{kg}$.)
9. Calculate the weight of 1.25 litres of mercury. [1 litre $=1000 \mathrm{~cm}^{3}$.]
[The density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$.]
What volume of water would weigh the same as the mercury?
10. An oblong, waterproof object measures $2 \mathrm{~cm} \times 8 \mathrm{~cm} \times 18 \mathrm{~cm}$. It weighs 3.5 N . When lowered into water, show whether the object will float or sink.
[Hint: is its density less than or greater than $1 \mathrm{~g} / \mathrm{cm}^{3}$?]
11. Any object with a density below $1 \mathrm{~g} / \mathrm{cm}^{3}$ will float in fresh water. An oblong, waterproof object measures $3 \mathrm{~cm} \times 10 \mathrm{~cm} \times 20 \mathrm{~cm}$. It weighs 5.5 N .

When lowered into water, show whether the object will float or sink.
12. An experiment to measure the density of air gave this data:

$$
\text { mass of air }=1.5 \mathrm{~g} ; \text { volume of air }=1200 \mathrm{~cm}^{3}
$$

Calculate the density of air suggested by this data, in $\mathrm{kg} / \mathrm{m}^{3}$.
13. An empty room measures $5 m \times 4 m \times 3 m$. Calculate the mass of air in the room. [Density of air $=1.23 \mathrm{~kg} / \mathrm{m}^{3}$.]
14. The density of chloroform is $1.48 \mathrm{~g} / \mathrm{cm}^{3}$.
(a) Express this value in $\mathbf{~ g g} / \mathbf{m}^{\mathbf{3}}$ and $\mathbf{g r a m s}$ per litre.
(b) What volume of chloroform would weigh 4 newtons?
15. The density of sea water is $1020 \mathrm{~kg} / \mathrm{m}^{3}$. What volume, in cubic centimetres, would be occupied by 51 g ?
16. An oblong, solid copper block has the measurements $10 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2.5 \mathrm{~cm}$. It has a mass of 448 g .
Calculate the density of copper from these measurements.
17. What would be the mass, in grams, of $60 \mathrm{~cm}^{3}$ of iron which has a density of $7.9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$?
18. A block of cork has the dimensions shown in the diagram.

The block is weighed on an accurate balance and its mass found to be 288 grams. Calculate the density of cork in $\mathrm{g} / \mathrm{cm}^{3}$.
19.

When lowered carefully into a displacement vessel, a 253 g lump of lead displaces $22 \mathrm{~cm}^{3}$ of water.
What value do these measurements give for the density of lead?

20. Gold's density is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. To check if a 77 g coin is made of gold or a cheap metal of much lower density, it is lowered into water and displaces $4 \mathrm{~cm}^{3}$.

Calculate the density of the coin and state whether or not it is gold.
21. A box of shopping has the measurements shown in the diagram.

It weighs 227 newtons.
Calculate the average density of the contents of the box in $\mathrm{g} / \mathrm{cm}^{3}$. (' g ' $=10 \mathrm{~N} / \mathrm{kg}$)
22. A $25 \mathrm{~m} \times 15 \mathrm{~m}$ swimming pool is filled to an average depth of 1.5 m .

If the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$, what is the mass of water in the pool, in tonnes? [1 tonne $=1000 \mathrm{~kg}$]
23. Carbon dioxide gas has a density of about $2 \mathrm{~kg} / \mathrm{m}^{3}$. Being more dense than air, it sinks to the floor when in a room. If 1.2 kg of carbon dioxide gas is released into a room, whose floor measures $4 \mathrm{~m} \times 3 \mathrm{~m}$, to what height above the floor will the gas reach? (Assume none escapes from the room and there is no furniture in the room.)
24. A cardboard box of shopping measures $50 \mathrm{~cm} \times 40 \mathrm{~cm} \times 30 \mathrm{~cm}$. It weighs 500 newtons.
(a) What is the mass of the box of shopping? (Take ' g ' = $10 \mathrm{~N} / \mathrm{kg}$.)
(b) Calculate the density of the box of shopping in $\mathrm{g} / \mathrm{cm}^{3}$.
(c) If the box was waterproof, would it float or sink in water?
25. When lowered carefully into a displacement vessel, a lump of aluminium displaces $50 \mathrm{~cm}^{3}$ of water.

What mass is the lump if the density of aluminium is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$?

aluminium
26. The density of iron is $7.8 \mathrm{~g} / \mathrm{cm}^{3}$. A piece of iron with a mass of 273 g is lowered on the end of a piece of thread into a displacement vessel.

What volume of water is displaced into the beaker?

Pressure = force \div area

1. Use the formula pressure $=$ force \div area to calculate the value of the missing quantities in the table.

pressure (Pa)	force (N)	area $\left(\mathbf{m}^{\mathbf{2}}\right)$
-	10	2
-	1.0	4.0×10^{-5}
-	10^{6}	2.5×10^{-5}
10^{5}	400	-
5×10^{6}	2000	-
4×10^{-3}	8×10^{-3}	-
2.5×10^{5}	-	0.02
10^{7}	-	10^{-3}

2. If pressure $=$ force \div area, complete these rearranged formulae:
(a) force = ?
(b) \quad area $=$?
3. The flat soles of a boy's shoes each have an area of $250 \mathrm{~cm}^{2}$.

If the boy weighs 500 N , calculate the pressure exerted on a floor when the boy stands:
(a) with his weight equally spread between both feet
(b) on one foot.
4. The pressure of the atmosphere at sea level is 100000 pascals.

Calculate the force exerted by the atmosphere on the surface of the water in a swimming pool which measures 25 metres long by 15 metres wide.
5. At sea level, where the atmospheric pressure is $10^{5} \mathrm{~Pa}$, what horizontal area would experience a force of $10^{4} \mathrm{~N}$?
Give the answer in (a) square metres and (b) square centimetres. [$1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}$]
6. The atmospheric pressure at the surface of the planet Venus is thought to be 90 times that of our planet - that is, $9.0 \times 10^{6} \mathrm{~Pa}$. What would be the inward force on each square centimetre of the body of a space probe if it managed to reach the surface of Venus?
7. Mars has a very thin atmosphere. At its surface, the force on each square centimetre of an object's body is just 67 mN .
(a) Calculate the value of Mars' atmospheric pressure in pascals.
(b) To the nearest ten times, how much smaller is Mars' atmospheric pressure than Earth's.
8. The air inside a sealed glass flask has a pressure of $1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. The flask is now heated and the air pressure increases by a factor of four. With the new pressure, what total outward force does the air exert on a flat section of the flask which has an area of $2 \mathrm{~cm}^{2}$?
9. A boy becomes trapped on dangerously thin ice on a pond. Which action would be safer for the boy to take:
(a) walking normally but slowly to the edge of the pond or
(b) shuffling with both feet on the ice at all times? Explain your choice.
10. A standard brick has dimensions of $21.5 \mathrm{~cm} \times 10.5 \mathrm{~cm} \times 6.5 \mathrm{~cm}$ and weighs 35 N .

Calculate: (a) the smallest pressure exerted by the brick when lying with one side on a flat surface.
(b) the greatest pressure it can exert on one side.
11. An 80 kg man sits on the blunt end of a drawing pin which has an area of $0.7 \mathrm{~cm}^{2}$. Calculate the pressure (in pascals) exerted by the pin on the man. (Take ' g ' $=10 \mathrm{~N} / \mathrm{kg}$)

Note: for questions 12-19: the pressure at a given depth ' h ' in a liquid of density ' ρ ' is calculated using the formula $\mathbf{p}=\boldsymbol{\rho} \mathbf{g h}$ where ' \mathbf{g} ' is the gravitational field strength.
12. Show that $\boldsymbol{\rho g h}$ (density x gravitational field strength x depth) has the same dimensions as pressure.
13. Calculate the pressure (above that of the atmosphere) at a depth of 10 m in water which has a density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$. (Take ' g ' as $10 \mathrm{~N} / \mathrm{kg}$.)
14. At what depth in mercury (density $13600 \mathrm{~kg} / \mathrm{m}^{3}$) would the pressure be the same as at a depth of 68 cm in water (density $1000 \mathrm{~kg} / \mathrm{m}^{3}$)?
15. Sketch a graph to show the relationship between pressure and depth in a liquid of uniform density.
16. The pressure at a depth of 50 cm in water is 5000 pascals above atmospheric pressure. What would it be at the same depth in a liquid with a density 90% that of water?
17. The pressure at a depth of 0.5 metres in a certain liquid is 4500 Pa above atmospheric pressure. At what depth would the pressure rise to 13.5 kPa ?
18. The pressure at a certain depth of fresh water is 20 kPa above atmospheric pressure. What would the pressure be at the same depth in another liquid with a density 1.3 times that of water?
19. An ocean temperature probe is lowered from a survey ship into the water. The maximum pressure that the probe is designed to withstand is 100 MPa . What is the greatest depth to which the probe could be safely lowered? (Density of sea water $=1020 \mathrm{~kg} / \mathrm{m}^{3}$.)
20. Which unit could also be the 'pascal-metre squared'?

Buoyancy and Flotation

1. What is the relationship between pressure and depth in a liquid of uniform density?
2. Sketch a graph to show how the pressure of a liquid of uniform density varies with depth.
3. What is the relationship between the pressure at a certain depth in a liquid and the density of the liquid?
4. Sketch a graph to show how the pressure of a liquid at a certain depth varies with density.
5. Complete this statement about a floating object (Archimedes' principle): "the \qquad on a floating object is equal to the \qquad of the liquid \qquad ."
6. A ship is said to have a "displacement 20000 tonnes".
(a) What is meant by this statement?
(b) What is the ship's mass?
7. Explain, in terms of water pressure, why a ship floats in water below the surface of the water.

Why does it sink to a certain depth?

8. A ship, in harbour, is loaded with cargo. Explain, in terms of pressure, why it sinks lower into the water as the cargo is loaded.
9. A ship sails up river from the sea. As it does so, it sinks lower and lower into the water. Explain, in terms of pressure, why this happens. (Assume that the weight of the ship is constant.)
10. A piece of wood, of mass 15 grams and which is less dense than water, is gently lowered into a displacement vessel. The displaced water is collected and measured with a measuring cylinder.

What volume of water would be collected?
[The density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$.]

11. Explain why it is easier to float in the sea than in an inland, fresh water loch.

Your answer must make mention of pressure.
12. (a) In which conditions of temperature and salinity ('saltiness') would a ship float lowest in the water?
(b) Explain the purpose of the 'Plimsoll Line' which is painted on the side of ships' hulls.
13. When a object with a large density is suspended in water, it doesn't feel so heavy.
(a) Has the object's weight changed? Explain.
(b) Explain, in terms of pressure, why there is an upthrust (or buoyancy force) on the object.
14. An object, with a density greater than that of water and suspended from a newton balance, is lowered into a tall cylinder of the liquid. The reading on the balance decreases from 6.4 N to 4.4 N .
(a) What is the object's weight?
(b) Explain why the reading on the balance decreases.
(c) What is the size of the buoyancy force on the object?
(d) What happens to the reading on the balance as the object is lowered further into the water? Explain.

15. Which factor or factors, for an object submerged in a liquid determine(s) the size of the upthrust which acts on the object?
(a) the liquid's density
(b) the depth to which the object is submerged
(c) the volume of the object
(d) the density of the object
(e) the shape of the object
16. The upthrust on a submerged object is equal to the weight of the displaced water.
(a) Taking the density of water as $1 \mathrm{~g} / \mathrm{cm}^{3}$ and ' g ' as $10 \mathrm{~N} / \mathrm{kg}$, calculate the upthrust which would exist on this oblong piece of iron if suspended in a tank of water.

(b) If the block was made of polystyrene and it had to be pushed down to submerge it in the water, what would be the size of the upthrust on the block?
17. A large polystyrene ball is held submerged in a tank of water by a downward force ' F '. If the ball's weight is small enough to be ignored and the force is found to be 0.5 newtons,
(a) what upthrust acts on the ball and
(b) what volume is the ball ?
[Water's density $=1 \mathrm{~g} / \mathrm{cm}^{3} ; ~ ' g '=10 \mathrm{~N} / \mathrm{kg}$]

18. A shipping mine, which is less dense than water, is tethered to the sea-bed by a chain.

The mine's mass is 400 kg and it has a volume of $0.5 \mathrm{~m}^{3}$.

Calculate the tension ' T ' in the tethering chain.
[Take ' g ' = $10 \mathrm{~N} / \mathrm{kg}$ and the density of sea water as $1020 \mathrm{~kg} / \mathrm{m}^{3}$]

19. (a) Explain how a hot-air balloon achieves sufficient of a lifting force to accelerate upwards from the ground.
(b) The balloon is drifting sideways at a constant height. If the burner is switched off and hot air is released from the top of the balloon, allowing cold air to enter the bottom, with no change to the balloon's volume, what happens to:
(i) the buoyancy force,
(ii) the weight of the balloon and
(iii) the unbalanced force

20. Explain why a balloon filled with helium gas floats upwards in the air and yet a balloon filled to the same volume with carbon dioxide gas falls down when released.

Gas Laws

1. Boyle's Law, which describes the behaviour of a fixed mass of gas at constant temperature, can be written as ' $\mathrm{pV}=$ constant'.
Given a set of data for a gas under these conditions, consisting of the volume of the gas at a number of different pressures, which graph should be constructed to show a 'straight line through the origin'?
2. Complete the following table which has the results for the volume and pressure of a fixed mass of gas in a 'Boyle's Law' experiment.

Volume (cm ${ }^{\mathbf{3}}$)	pressure (units)	pV
10	30	300
15	-	-
20	-	-
30	-	-
-	7.5	-
-	6	-

3.The air inside a bicycle pump is at atmospheric pressure ($1.01 \times 10^{5} \mathrm{~Pa}$.)

The hole is blocked and the piston slowly pushed in till the air inside is reduced to one quarter of its original volume.
What is the air pressure inside the pump now?
4. An air bubble forms at the bottom of a deep lake and rises to the surface.

If there is no change in the bubble's temperature, what changes happen to its volume and pressure as it gets closer to the surface?
5. The co-ordinates of a point \mathbf{A} on the line of a pressure-volume graph constructed for a fixed mass of gas at constant temperature are (40, 30.)
Points B and C also lie on the line. Calculate the likely values of ' \mathbf{x} ' and ' \mathbf{y} '.

6. A certain car's suspension works by having a fixed mass of gas sealed inside a flexible capsule. Its pressure is usually $2.4 \times 10^{5} \mathrm{~Pa}$ and its volume is 2 litres. On a bumpy road, at one point, the gas inside the capsule is compressed to 1.5 litres.
What is its pressure at this point? (Assume the gas temperature remains constant.)
7. If the temperature of a fixed mass of gas remains constant, what happens to its volume if the pressure is: (a) doubled (b) halved?
8. A child lets his helium-filled balloon go and it floats up, higher and higher into the air, becoming larger and larger. When it was at ground level, its volume was $4000 \mathrm{~cm}^{3}$ and the helium was at a pressure of $1.5 \times 10^{5} \mathrm{~Pa}$.
What would the helium's pressure become if the volume increased to $6000 \mathrm{~cm}^{3}$ with no change of temperature?
9. Complete this statement of Charles' Law with the missing words: " the volume of a fixed mass of gas at constant \qquad is directly proportional to the \qquad temperature of the gas."
10.

For a fixed mass of gas at a constant pressure, which quantity should be on the x-axis of this graph to give a straight line through the origin?

11. How is a temperature on the Celsius scale converted to the equivalent temperature on the kelvin (or absolute) scale?
12. Convert these Celsius temperatures into kelvin temperatures:
(a) $0^{\circ} \mathrm{C}$
(b) $100^{\circ} \mathrm{C}$
(c) $20^{\circ} \mathrm{C}$
(d) $37{ }^{\circ} \mathrm{C}$
(e) $-273^{\circ} \mathrm{C}$
(f) $-196^{\circ} \mathrm{C}$
(g) $327^{\circ} \mathrm{C}$
(h) $273^{\circ} \mathrm{C}$
13. Convert these kelvin temperatures into Celsius temperatures:
(a) 0 K
(b) 273 K
(c) 373 K
(d) 294 K
(e) 261 K
14. A large advertising balloon contains $25000 \mathrm{~m}^{3}$ of gas when it is at a temperature of $15^{\circ} \mathrm{C}$. A cold front of air arrives and the balloon's temperature falls to $-5^{\circ} \mathrm{C}$.
Assuming that the gas pressure remains constant, calculate the volume of the gas inside the balloon at the lower temperature.
15. $100 \mathrm{~cm}^{3}$ of nitrogen gas at $-196^{\circ} \mathrm{C}$ warms up in an expandable container to room temperature of $20^{\circ} \mathrm{C}$. What does the volume of the nitrogen become, if its pressure remains unchanged?
16. A fixed mass of a gas has a volume of $200 \mathrm{~cm}^{3}$ when at $-10{ }^{\circ} \mathrm{C}$.

Assuming that its pressure has not changed, what is its temperature if its volume doubles?
17. What is the difference between $100^{\circ} \mathrm{C}$ and $100 \mathrm{C} \circ$?
18. Complete this statement of the 'Pressure Law' with the missing words: " the pressure of a fixed mass of gas at constant \qquad is directly proportional to the \qquad temperature of the gas."
19.

For a fixed mass of gas at a constant volume, which quantity should be on the x-axis of this graph to give a straight line through the origin?

20. A gas trapped in a rigid container is at a pressure of $1.2 \times 10^{5} \mathrm{~Pa}$ when its temperature is $20^{\circ} \mathrm{C}$. Calculate its pressure at $80^{\circ} \mathrm{C}$.
21. A car tyre's pressure is checked at 30 units when the air temperature inside it is $-2^{\circ} \mathrm{C}$. After a journey, the pressure is checked again and found to have risen to 32 units. Assuming no change in volume, what is the new temperature of the air inside the tyre?
22. After a long journey, a car tyre's pressure is 30.5 units at a temperature of $24^{\circ} \mathrm{C}$. During the night, its pressure falls to 26.9 units. What was the temperature of the air in the tyre during the night? (Assume no change occurs in the tyre's volume.)
23. The air in a sealed flask exerts a pressure of $1.50 \times 10^{5} \mathrm{~Pa}$ on the walls of the flask when its temperature is $26^{\circ} \mathrm{C}$. What would the pressure become if the flask was immersed in a large container of ice and water?
24. A gas in a rigid flask has a pressure of $9 \times 10^{4} \mathrm{~Pa}$. Its temperature is $9^{\circ} \mathrm{C}$. Calculate the Celsius temperature to which the flask should be heated for its pressure to increase to $1.5 \times 10^{5} \mathrm{~Pa}$.
25. A gas, at $-1^{\circ} \mathrm{C}$ and $1.01 \times 10^{5} \mathrm{~Pa}$, is heated in a rigid container until its pressure has increased by 50%. What is its new temperature?
26. A car tyre pressure is $28.1 \mathrm{lb} / \mathrm{in}^{2}$ at a temperature of $10^{\circ} \mathrm{C}$.

What would the pressure become if the tyre's air temperature increased by 15 Co ?
27. A gas bubble of volume $3 \mathrm{~cm}^{3}$ forms at the bottom of a loch where the pressure is 3 atmospheres and the temperature $4^{\circ} \mathrm{C}$.
What is its volume on reaching the surface where the water temperature is $13^{\circ} \mathrm{C}$?
28. The pressure in a flexible plastic flask is 1000 kPa when its volume is $500 \mathrm{~cm}^{3}$ and its temperature $10^{\circ} \mathrm{C}$. What would the pressure become if the gas volume was reduced to $400 \mathrm{~cm}^{3}$ and it was heated to a temperature of $90^{\circ} \mathrm{C}$?
29. If a syringe contains $100 \mathrm{~cm}^{3}$ of a gas at $20^{\circ} \mathrm{C}$ and its pressure is atmosphere, calculate the volume occupied by the gas if the pressure is increased to 1.5 atmospheres and the temperature becomes $240{ }^{\circ} \mathrm{C}$.
30. Calculate the Celsius temperature of a fixed mass of gas in a rigid container if its pressure has increased from $1.2 \times 10^{5} \mathrm{~Pa}$ at $12^{\circ} \mathrm{C}$ to $2.8 \times 10^{5} \mathrm{~Pa}$.
31. What temperature rise would cause a fixed volume of gas with a pressure of $1.2 \times 10^{5} \mathrm{~Pa}$ at $10^{\circ} \mathrm{C}$ to increase in pressure to $1.4 \times 10^{5} \mathrm{~Pa}$?
32. The air in a bicycle pump, with the plunger pulled out, has a volume of $100 \mathrm{~cm}^{3}$.

The pump is open to the air, where the pressure is $1.01 \times 10^{5} \mathrm{~Pa}$.
The outlet hole is now blocked and the plunger pushed slowly in until the volume is just $20 \mathrm{~cm}^{3}$.
Calculate the new air pressure inside the pump.
33. A diver has an aqualung which contains 12 litres of air at a pressure of 10000 kPa .
(a) How much space would the same mass of air occupy at a pressure of just 250 kPa ? (Assume that the temperature does not change.)
(b) If the diver breathed air from the aqualung at the rate of 20 litres per minute, at a depth in the sea where the pressure was 250 kPa , how long would the air last? (Assume that all the air from the aqualung was able to be breathed by the diver.)
(c) Why, in fact, would less air than this be available to the diver?
34. A gas bubble, formed at the bottom of a deep lake where the pressure is 1200 kPa and the temperature of the water $4^{\circ} \mathrm{C}$, rises to the surface, where the pressure is 100 kPa and the temperature $16^{\circ} \mathrm{C}$. Just before reaching the surface, the bubble's volume is $62.6 \mathrm{~cm}^{3}$. Calculate the volume which the bubble had when it was formed at the bottom of the lake.
35. A boy has a flat tyre on his bicycle. What is the value of the air pressure inside the tyre? (Careful!)
36. Air pressure at sea level is about $15 \mathrm{lb} / \mathrm{in}^{2}$ (pounds per square inch.)

A motorist checks the pressure of one of his tyres on an accurate garage pressure gauge and it reads $29 \mathrm{lb} / \mathrm{in}^{2}$.

What is the actual air pressure inside the tyre?
37. Why is the air pressure smaller at the top of Mount Everest than at sea level?
38. Steam is at a temperature of $100^{\circ} \mathrm{C}$ and a pressure of 1 atmosphere inside a pressure vessel.

What does the pressure become if the temperature of the steam increases to $273^{\circ} \mathrm{C}$?
39. The co-ordinates of one point on the straight line graph of pressure of a gas against absolute temperature (at constant volume) are $(420,280$.)

Another point on the line is given as $(\mathbf{x}, 360$.) What is the value of \mathbf{x} ?

Radioactivity

1. For the following isotopes, denoted thus:

Z
where $\mathbf{Z}=$ atomic number, $\mathbf{A}=$ mass number and $\mathbf{X}=$ element, state the number of protons and neutrons in the nucleus of the atom and name the element:
(a) ${ }_{6}^{12} \mathrm{C}$
(b) ${ }_{6}^{14} C$
(c) ${ }_{92}^{235} \mathrm{U}$
(d) 238
92
(e) 218
Pb
(f) 228 Ra
88
(g) ${ }_{2}^{4} \mathrm{He}$
2. If a radioactive nucleus emits an alpha particle, state what happens to:
(a) the number of protons left in the nucleus,
(b) the number of neutrons.
3. If a radioactive nucleus emits a beta particle, state what happens to:
(a) the number of protons in the nucleus,
(b) the number of neutrons.
4. A radioactive nucleus often emits a gamma ray, following the emission of an alpha particle or beta particle. On emission of the gamma ray, state what happens to:
(a) the number of protons in the nucleus,
(b) the number of neutrons.
5. In the following examples of nuclear disintegrations, identify the missing numbers, elements or particles:
(a) ${ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{Y} \longrightarrow \mathrm{Th}^{\mathrm{X}}+{ }_{2}^{4} \mathrm{He}$
(b) ${ }_{90}^{234} \mathrm{Th} \longrightarrow{ }_{Y} \longrightarrow \mathrm{X}_{\mathrm{Pa}}+{ }_{-1}^{0} \mathrm{e}$
(c)

(d)

(e) 210

210
${ }_{x}^{0} \mathrm{Bi}+{ }_{-1}^{Y} \mathrm{e}$
(f)

6. What is meant by the term half-life of a radioactive isotope?
7. A certain radioisotope has a half-life of 3 minutes. What fraction of the original number of atoms is still unchanged after:
(a) 3 minutes
(b) 6 minutes
(c) 9 minutes?
8. What percentage of the original activity of a radioactive substance remains after four half-lives have passed?
9. The activity of a radioisotope falls from 8000 kBq to 2000 kBq in a time of 4 days. What is the half-life of the radioisotope?
10. Cobalt-60 is used in hospitals as a gamma emitter and has a half-life of 5.3 years. To the nearest year, how long would it take a new cobalt-60 source to lose seveneighths of its original activity?
11. Radon-220 gas emits alpha particles and has a half-life of just 55 seconds. Some of the gas escapes from its container into a laboratory. After how long would it be safe to enter the laboratory if a safe level was considered to be less than 1\% of the activity which the gas had when it was was released?
12. Radon-222 has a half-life of 92 hours. How long would it take for the activity of a sample of the gas to be reduced to about 3% of its initial value?
13. In a laboratory where the background count is 25 counts per minute (c.p.m.), the uncorrected count rate from a radioisotope falls from 960 c.p.m. to 54 c.p.m. over 1 hour 15 minutes. What is the half-life of the radioisotope in minutes?
14. The half-life of a radioisotope is 3.7 days. How long would it take for the activity of a sample of the isotope to fall to one-sixty fourth of its original value?
15. A radioactive source has an activity of 1.5 MBq . How many decays would occur in one hour? [Note: $1 \mathrm{~Bq}=1$ decay per second]
16. If one gram of carbon from a living tree has an activity of 15 decays per minute due to the radioisotope carbon-14 which has a half-life of 5600 years, what count rate per gram would be expected from a wooden artifact made in 3500 B.C.?
17. A radionuclide's activity falls to $\mathbf{6 . 2 5 \%}$ of its initial value in a time of 24 hours. What is the value of its half-life?
18. The table has the results of an experiment to measure the half-life of a radioactive sample. The counts exclude the background radiation.

Count rate in counts per minute Time in minutes	6400	3900	2600	1800	1010	690	500

Plot a line graph of count rate against time and use it to estimate the half-life of the sample.
19. The table has the results of an experiment to measure the half-life of a radioactive sample. The counts include the background radiation.

Count rate in counts per minute Time in minutes	425	255	194	136	110	64	53

Plot a line graph of count rate against time and, from it, estimate:
(a) the background count,
(b) the half-life of the sample.
20. Calculate the half-life of the substance whose count-rate has been plotted against time in the graph shown. The count-rate has been corrected for background radiation.

21. Calculate the half-life of the substance whose count-rate has been plotted against time in the graph shown. The count-rate has been corrected for background radiation.

$E=m^{2}$

1. When nuclear fission occurs, the nucleus of an atom splits into two approximately equal pieces and a number of neutrons is released. How does the total mass of the particles after the fission compare with the total mass before?
2. In a nuclear fission event, energy is released. What is the source of this energy?
3. Write down the equation which allows the energy created from a certain quantity of mass to be calculated. State what each letter in the equation represents.
4. When a nucleus of uranium-235 captures a neutron, fission takes place. One possible fission is:

$$
{ }_{92}^{235} U+{ }_{0}^{1} n \quad \longrightarrow{ }_{36}^{90} \mathrm{Kr}+{ }_{56}^{144} \mathrm{Ba}+{ }_{0}^{1} \mathrm{n}
$$

By ensuring that the numbers of protons and neutrons are each the same before and after the fission, calculate how many neutrons are released.
5. When a nucleus of uranium-235 captures a neutron, fission takes place. One possible fission is:

By ensuring that the numbers of protons and neutrons are each the same before and after the fission, calculate the values of \mathbf{x} and \mathbf{y}.
6. When a nucleus of plutonium-239 captures a neutron, fission takes place. One possible fission is:

$$
{ }_{94}^{239} \mathrm{Pu}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{52}^{137} \mathrm{Te}+{ }_{\mathrm{y}}^{\mathrm{x}} \mathrm{Z}+3_{0}^{1} \mathrm{n}
$$

By ensuring that the numbers of protons and neutrons are each the same before and after the fission, calculate the values of \mathbf{x} and \mathbf{y} and identify element ' \mathbf{Z} '.
7. In a certain fission event, $3.67 \times 10^{-28} \mathrm{~kg}$ of mass is converted to energy. Calculate the energy released in joules. ('c' $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
8. In a fission event, $1.46 \times 10^{-11} \mathrm{~J}$ of energy is released. How much mass was converted to energy by the fission? ('c' $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
9. In the Sun, 'light' nuclei are fused together at very high temperatures with the loss of a small quantity of mass. What is the name for this process?
What is the mass converted into?
10. The Sun is 'burning' its nuclear fuel at the rate of 4 million tonnes per second. Calculate how much energy is released every second. (1 tonne $=1000 \mathrm{~kg}$).

Nuclear reactions

1. Write down the equation which calculates the quantity of energy released when matter is destroyed in nuclear disintegrations.
2. Uranium-238 is radioactive and decays to thorium-234 with the emission of an alpha particle. The mass that is lost in the reaction is $5.0 \times 10^{-30} \mathrm{~kg}$.
Calculate the energy released.
3. An alpha particle from the radionuclide americium- 241 has $8.8 \times 10^{-13} \mathrm{~J}$ of kinetic energy. Calculate the mass lost in the disintegration.
4. Rewrite each of these examples of nuclear fission with numbers in place of the letters \mathbf{x} and \mathbf{y} and the element symbol in place of the letter \mathbf{Z}.
(a)

(b) ${ }_{0}^{1} n+{ }_{92}^{235} U$
$\longrightarrow{ }_{42}^{98} \mathrm{Mo}+{ }_{\mathbf{x}}^{136} \mathbf{Z}+\mathbf{y}_{0}^{1} \mathrm{n}+$ 4 $_{-1}^{0} \mathrm{e}$
(c)

5. Use the data in the table to calculate the loss of mass in this nuclear reaction involving a nucleus of uranium -235 and the energy released.

$$
{ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{52}^{134} \mathrm{Te}+{ }_{40}^{98} \mathrm{Zr}+4{ }_{0}^{1} \mathrm{n}
$$

Particle	Mass in kg
${ }^{1} \mathrm{n}$	0.017×10^{-25}
${ }_{0}{ }^{235} \mathrm{U}$	3.901×10^{-25}
${ }_{92}^{134} \mathrm{Te}$	2.221×10^{-25}
${ }_{52} \mathrm{Te}$	
${ }_{98} \mathrm{Zr}$	1.626×10^{-25}

6. Use the data in the table to calculate the loss of mass in this nuclear reaction involving a nucleus of uranium -235 and the energy released.

$$
{ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{90} \mathrm{Kr}+2{ }_{0}^{1} \mathrm{n}
$$

Particle	Mass in kg
${ }^{1} \mathrm{n}$	0.017×10^{-25}
${ }^{235} \mathrm{U}$	3.901×10^{-25}
${ }_{92} \mathrm{U}$	
${ }^{144} \mathrm{Ba}$	2.388×10^{-25}
${ }_{56} \mathrm{Ba}$	
${ }_{36} \mathrm{Kr}$	1.492×10^{-25}

7. For the following fission reaction, use the data in the table to calculate:
(a) the mass lost (ignore the mass of the four electrons) in (i) \mathbf{u} (ii) $\mathbf{k g}$.
(b) the energy released. [Note: $1 \mathrm{u}=1.660 \times 10^{-27} \mathrm{~kg}$]

$$
{ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{42}^{98} \mathrm{Mo}+{ }_{54}^{136} \mathrm{Xe}+2{ }_{0}^{1} \mathrm{n}+{ }_{4}^{0} \mathrm{e}
$$

Particle	Mass in u
${ }^{1}{ }_{0} \mathrm{n}$	1.009
${ }_{2}{ }^{235} \mathrm{U}$	
${ }_{92} \mathrm{U}$	234.993
${ }_{98} \mathrm{Mo}$	97.883
${ }_{42}{ }^{136} \mathrm{Xe}$	
${ }_{54} \mathrm{Xe}$	135.878

8. For the following fission reaction, use the data in the table to calculate:
(a) the mass lost (ignore the mass of the four electrons) in (i) \mathbf{u} (ii) $\mathbf{k g}$.
(b) the energy released. [Note: $1 \mathrm{u}=1.6600 \times 10^{-27} \mathrm{~kg}$]

$$
{ }_{0}^{1} \mathrm{n}+{ }_{94}^{239} \mathrm{Pu} \longrightarrow{ }_{52}^{137} \mathrm{Te}+{ }_{42}^{100} \mathrm{Mo}+3{ }_{0}^{1} \mathrm{n}
$$

Particle	Mass in \boldsymbol{u}
${ }^{1} \mathrm{n}$	1.0087
${ }_{0}$	
239	239.0006
94 Pu	
137 Te	137.0000
52	
100 Mo	99.8850

9. When a nucleus of uranium-235 undergoes fission, $3.2 \times 10-11 \mathrm{~J}$ of energy is released on average. The fuel pellets used in a certain nuclear reactor contain 5.9×10^{22} atoms of uranium-235 in every kilogram.
(a) How many fissions per second would produce 1000 MW of heat?
(b) At what rate is the 'fuel' used up, in grams per second?
10. A power station reactor produces a net electrical power output of 624 MW at an efficiency of 45%. On average, each fission of a uranium- 235 nucleus produces $3.17 \times 10-11 \mathrm{~J}$ of energy.
(a) What 'heat' power is produced by the fissions in the reactor?
(b) Calculate how many fissions are needed per second.
11. In the following nuclear fusion reactions, identify the missing numbers or element.
(a)

$$
{ }_{1}^{2} \mathrm{H}+{ }_{x}^{3} \mathrm{H} \longrightarrow{ }_{2}^{\mathbf{y}} \mathbf{Z}+{ }_{0}^{1} \mathrm{n}
$$

(b)

12. A nuclear fusion reaction is shown below.

(a) Use the data in the table to calculate the mass lost and the energy released by the reaction.

Particle	Mass in kg
${ }^{2} \mathrm{H}$	3.44441×10^{-27}
${ }_{1}^{3} \mathrm{H}$	5.00890×10^{-27}
${ }_{1} \mathrm{H}$	6.64632×10^{-27}
${ }_{2}^{4} \mathrm{He}$	1.67490×10^{-27}
${ }_{0}^{1} \mathrm{n}$	

(b) How many fusion events per second would be needed to generate a 'heat' power of 5 MW ?
13. A nuclear fusion reaction is shown below.

(a) Use the data in the table to calculate the mass lost and the energy released by the reaction. [Note: $1 \mathrm{u}=1.660 \times 10-27 \mathrm{~kg}$]

Particle	Mass in u
${ }_{1}^{2} \mathrm{H}$	2.013
${ }_{2}^{3} \mathrm{He}$	3.015
${ }_{0}^{1} \mathrm{n}$	1.009

(b) How many fusion events per second would be needed to generate a 'heat' at the rate of 20 MW ?

E = hf (photons)

Note: (1) the velocity of light in air (or a vacuum), $C=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$,
(2) Planck's constant, $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$.

1. Use the equation ' $\mathbf{E}=\mathbf{h f}$ ' to calculate the energy carried by photons of electromagnetic radiation with frequencies:
(a) $6.00 \times 10^{14} \mathrm{~Hz}$
(b) $3.75 \times 10^{14} \mathrm{~Hz}$
(c) $10^{15} \mathrm{~Hz}$
2. Calculate the energy carried by photons of electromagnetic radiation with wavelengths:
(a) $4.00 \times 10^{-7} \mathrm{~m}$
(b) $\quad 6.50 \times 10^{-10} \mathrm{~m}$
(c) 700 nm
$\left[1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}\right]$
3. Calculate the wavelength of a photon carrying $3.98 \times 10^{-19} \mathrm{~J}$ of energy:
(a) in metres
(b) in nanometres (nm)
4. What is the frequency of a monochromatic light source that emits photons which each carry $2.88 \times 10^{-19} \mathrm{~J}$ of energy?
5. An X-ray machine produces X-rays of wavelength $2.5 \times 10^{-11} \mathrm{~m}$.

Calculate the energy of an X-ray photon.
6. A laser beam emits light of wavelength 633 nm and has a power of 1 mW .
(a) Calculate the energy of a photon in the beam.
(b) The beam makes a spot of 1 cm diameter on a distant screen. Calculate the intensity of the beam on the spot in watts per square metre ($\mathrm{W} / \mathrm{m}^{2}$.) [Note: $1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}$]
(c) Calculate the number of photons emitted by the laser every second.
7. Estimate the number of photons of visible radiation emitted by a 100 watt light bulb each second.

Assume the light bulb is 25% efficient at converting electric energy light energy. Take the average wavelength of light to be 500 nm .

Dosimetry and Safety

1. Name the unit in which the activity of a radioactive source is measured and state its abbreviation.
2. How many becquerels are:
(a) 1 kBq
(b) $\quad 1 \mathrm{MBq}$
3. Use the formula average activity = number of decays \div time to calculate the missing entries in the table.

average activity number of decays	time	
-	20000	10 s
-	6×10^{5}	10 s
-	1.11×10^{7}	1 m
-	1.50×10^{7}	1 m 15 s
2.5 kBq	-	30 s
18 kBq	-	2 s
3 MBq	-	5 s
2.5 MBq	-	10 m
185 kBq	-225000	-
$1.2 \times 10^{7} \mathrm{~Bq}$	5.4×10^{8}	-

4. Describe the difference between the terms 'activity' and 'count rate'.
5. The background count is measured in a science laboratory with a Geiger counter.

Over a time of 15 minutes, 480 events are counted.
Calculate the average background count for the laboratory in counts per minute (cpm).
6. Name the unit in which the quantity 'absorbed dose' is measured and state its abbreviation.
7. Use the formula absorbed dose = energy absorbed \div unit mass $[D=E / m]$ to calculate the missing entries in the table.

absorbed dose	energy (J)	mass (kg)
-	10	50
-	3×10^{-4}	60
20 mGy	-	50
$100 \mu \mathrm{~Gy}$	-	80
50 mGy	3.5	-

8. Over the course of a working day, a man's body, of mass 80 kg , receives 0.2 mJ of energy from various types of radiation. Calculate his absorbed dose in micrograys.
9. A man receives an absorbed dose of $160 \mu \mathrm{~Gy}$ from fast neutrons during an 8 hour shift. Calculate his absorbed dose rate in $\mu \mathrm{Gyh}^{-1}$.
10. A worker in a nuclear power station experiences an absorbed dose rate from thermal neutrons of $0.1 \mu \mathrm{Gyh}^{-1}$. What would the worker's total absorbed dose be over a 5 day working week of 8 hour shifts?
11. How long would a person need to experience an absorbed dose rate of 10 micrograys per hour to receive a total absorbed dose of 2 milligrays?
12. Name the unit in which the quantity 'dose equivalent' is measured and state its abbreviation.
13. In the relationship ' $\mathbf{H}=\mathbf{D Q}$ ', what quantity is represented by the letter ' \mathbf{Q} '?
14. A worker in a nuclear power station receives an annual absorbed dose of $200 \mu \mathrm{~Gy}$ from thermal neutrons. If the quality factor for thermal neutrons is $\mathbf{5}$, calculate the worker's annual dose equivalent.
15. The quality factor for gamma radiation is $\mathbf{1}$.

What would be the dose equivalent if the absorbed dose is measured as 30 mGy ?
16. A woman receives an absorbed dose of $2 \mu \mathrm{~Gy}$ from fast neutrons. If her dose equivalent is $20 \mu \mathrm{~Sv}$, what is the quality factor for fast neutrons?
17. If a worker is exposed to a dose equivalent rate of $10 \mu \mathrm{Svh}^{-1}$ for a total of 200 hours, what is his total dose equivalent in mSv?
18. During a 40-hour week, a radiotherapy technician receives a dose equivalent of $200 \mu \mathrm{~Sv}$ from X-rays. Calculate the dose equivalent rate in $\mu \mathrm{Svh}^{-1}$.
19. State the average annual effective dose equivalent in the UK which a member of the public receives.
20. A person receives a total effective dose equivalent of 5 mSv over a whole year. Calculate the average dose equivalent rate in $\mu \mathrm{Svh}^{-1}$. (Answer to 2 significant figures).
21. A radiation worker should not be exposed to an annual whole body dose equivalent of more than 50 mSv . Assuming a 40 hour working week and a 45 week year, calculate the maximum dose equivalent rate in $\mu \mathrm{Svh}^{-1}$ to which she should be exposed (to 2 significant figures.) Ignore the relatively small dose received in non-work time.
22. A man receives a radiation dose from two different sources:

80 mGy from thermal neutrons $(\mathrm{Q}=5)$ and 20 mGy from alpha particles $(\mathrm{Q}=10)$
Calculate:
(a) the man's total absorbed dose and
(b) his total dose equivalent.
23. Explain why dose equivalent is a better measure of the danger to health of exposure to radiation than absorbed dose.
24. A worker absorbs a radiation dose from three different types of radiation at the following rates:

Type	Absorbed dose rate	Quality factor
1	$10 \mu \mathrm{Gyh}^{-1}$	10
2	$40 \mu \mathrm{Gyh}^{-1}$	5
3	$100 \mu \mathrm{Gyh}^{-1}$	2

(a) Calculate his total absorbed dose rate from the three types of radiation.
(b) Calculate his total dose equivalent rate from the three types of radiation.
(c) What would be his total dose equivalent over a time of 5 hours?
25. The half-value thickness of a certain material for X-rays is 1 mm . What thickness of the material would be required for a shield to reduce penetration by X-rays to $1 / 16$ th of the intensity without the shield?
26. The count rate from a gamma source is measured by a Geiger counter as 6000 c.p.m. When 22 mm of lead is placed between the source and counter, the count rate becomes 1500 c.p.m.
(a) What is the half-value thickness of the lead for gamma rays?
(b) What would the count rate be if the thickness of lead was increased to 33 mm ?
27. The half-value thickness of a material for gamma-rays is calculated by measuring the count rate from a gamma source with different thicknesses of the material between the souce and detector. A graph of count rate against thickness is constructed.

From the graph, estimate the half-value thickness of the material.

Solar System and Universe

1. Copy and complete the following passage by inserting the missing words:
"The solar system consists of nine \qquad which orbit round the Sun.
The Sun is a \qquad . The time for a planet to make one full orbit of the Sun is called a \qquad . For our planet, Earth, this is 3651/4 \qquad . The Moon
is a natural \qquad of the Earth and takes about 27 days to make one whole orbit.

This time is called a lunar \qquad . As well as going round the Sun, the Earth is spinning on its own axis. It takes 24 \qquad to turn round once. This time is also called a \qquad ."
2. What is the nearest star to Earth called?
3. When it is night in Britain, where is the Sun?
4. Is it possible to be either daytime or night-time everywhere on the Earth at once? Explain.
5. The Sun and Moon both appear to be very nearly the same size as seen from the Earth and yet the Sun is more than four hundred times wider than the Moon.
Explain why they appear to be the same size.
6. The Sun is one of millions of stars in the Milky Way.

What is the name for a group of millions of stars such as the Milky Way?
7. The planets used to be known as wandering stars because they change their position in the night sky. The stars appear fixed, although it is now known that they are moving at high speeds. Why do the planets appear to move, but the stars appear to be fixed?
8. The two diagrams show the same part of the night sky on different nights. One of the objects is a planet.

Identify which object is the planet and explain why you chose it.
9. The nine planets of the Solar System are (in random order):

Earth Pluto Mercury Jupiter Venus Saturn Uranus Mars Neptune
(a) Write them out in order of distance from the Sun, starting with the planet which is nearest to the Sun.
(b) Which planet has the shortest year?
(c) What happens to the length of a planet's year as the distance from the Sun increases?
10. The diagram shows heat and light radiation from the Sun reaching the Earth. The Earth is tilted on its axis by about 230 .

Explain whether it is summer or winter in Britain.
11. Draw a diagram to show how the Earth's axis is tilted in relation to the Sun when the Northern Hemisphere is in summer.
12. If the Earth's axis was not tilted but was at right angles to the plane of its orbit round the Sun, explain why there would be no change of season in Britain.
13. The diagram shows the position of the Earth in its orbit of the Sun at a certain point of the year.

Copy the diagram and on it mark letter \mathbf{A}, \mathbf{B} and \mathbf{C} to show the position of the Earth:
(a) three months, (b) six months and (c) nine months later.
14. The diagram shows the position of the Earth when it is mid-summer in the northern hemisphere.

Copy the diagram and mark, with the letters \mathbf{N}, \mathbf{S} and \mathbf{E}, the positions of the Earth when:
(a) it is mid-winter in the northern hemisphere,
(b) it is mid-winter in the southern hemisphere and
(c) day and night are the same length everywhere - the equinox). (Note: there are two possible positions for E).
15. (a) State the name of the force which holds the planets in orbit round the Sun.
(b) How does the size of the force depend on the mass of the planet?
(c) How does the size of the force depend on the distance of the planet from the Sun?
16. What would happen if the Earth slowed down in its orbit round the Sun?
17. The Moon doesn't emit light on its own. Why, then, can we see it?
18. The diagram shows the Moon in different parts of its monthly orbit of the Earth.

Position A is for a New Moon (invisible from the Earth).
(a) Which positions give: (i) a full Moon (ii) a half Moon?
(b) Draw how the Moon would appear from Earth at position B.
(c) Draw how the Moon would appear from Earth at position \mathbf{H}.
(d) If position A occurred on 1st May, when would position E next occur?
(e) At which position would the Moon be on 28th May?
19. What kind of eclipse is shown in the diagram?

light from the Sun

Moon

Earth

20. A total eclipse of the Sun (or Solar eclipse) happens when the Moon casts its shadow over part of the Earth's surface.
(a) Draw a diagram to illustrate this, showing the relative positions of the Earth, Moon and Sun.
(b) Total eclipses of the Sun are very rare, and yet the Moon orbits the Earth once every Month.

Can you explain why there is not a total eclipse every month?
21. The tides are caused mainly by the gravitational attraction of the Moon causing water to bulge on opposite sides of the Earth in line with the Moon.

Draw a diagram to illustrate this and explain why the tide changes approximately every six hours.
22. Extra high tides (called spring tides) happen when the Moon and Sun are in certain positions relative to the Earth.

Draw labelled diagrams to show how the Moon, Sun and Earth are lined up at spring tides and explain why the tide is extra high.

Measurements

1. Convert the following volumes into cubic metres $\left(\mathrm{m}^{3}\right)$:
(a) $2000 \mathrm{~cm}^{3}$
(b) $60 \mathrm{~cm}^{3}$
(c) 3000 litres
2. Convert the following volumes into litres (I):
(a) $2500 \mathrm{~cm}^{3}$
(b) $2 \mathrm{~m}^{3}$
(c) $500 \mathrm{~cm}^{3}$
3. How many cubic centimetres (cm ${ }^{3}$) are there in these volumes?
(a) 1.6 litres
(b) $3 \mathrm{~m}^{3}$
(c) $0.065 \mathrm{~m}^{3}$
(d) 0.08 litres
4. Convert these measurements into metres (m):
(a) 200 cm
(b) 1500 cm
(c) 90 cm
(d) $7 \times 10^{3} \mathrm{~cm}$
5. Convert these areas into square metres ($\mathbf{m}^{\mathbf{2}}$):
(a) $4000 \mathrm{~cm}^{2}$
(b) $5 \times 10^{4} \mathrm{~cm}^{2}$
(c) $2 \mathrm{~km}^{2}$
(d) $10 \mathrm{~cm}^{2}$
6. Calculate the number of square centimetres $\left(\mathrm{cm}^{2}\right)$ in
(a) $1 \mathrm{~m}^{2}$
(b) $\quad 0.02 \mathrm{~m}^{2}$
(c) $3 \times 10^{-2} \mathrm{~m}^{2}$
(d) $\quad 10^{-4} \mathrm{~m}^{2}$
7. Convert these mass measurements into kilograms (kg):
(a) 2500 g
(b) 350 g
(c) 1020 g
(d) $3 \times 10^{4} \mathrm{~g}$
8. Convert these mass measurements into grams (g):
(a) 6.70 kg
(b) 3400 mg
(c) $\quad 0.05 \mathrm{~kg}$
(d) 150 mg
9. Change these times into seconds (s):
(a) 3 m
(b) 2 h 30 m
(c) 3.6 m
(d) 4 m 30 s
10. How many seconds are there in a minute, an hour, a day and a year?
11. A ticker timer makes $\mathbf{5 0}$ dots per second on a ticker tape.

What fraction of a second would be the following numbers of spaces between dots?
(a) 25
(b) 10
(c) 5
(d) 2
12. Calculate the area, in cm^{2}, of squares of side:
(a) 2 cm
(b) 5 cm
c) $\quad 10 \mathrm{~cm}$.
13. Calculate the volume, in cm^{3}, of cubes of side:
(a) 2 cm
(b) 5 cm
(c) 10 cm .
14. Do these calculations using your calculator:
(a) $2500 \div 5000$
(b) 0.002×10000
(c) $3400 / 8$
(d) $(500 \times 600) \div 1000$
(e) $300 \div(40 \times 5)$
15. Do these calculations using your calculator:
(a) $\left(2 \times 10^{3}\right) \times\left(4 \times 10^{2}\right)$
(b) $\left(4 \times 10^{5}\right) \times\left(2 \times 10^{-2}\right)$
(c) $\left(6 \times 10^{3}\right) \div\left(3 \times 10^{2}\right)$
(d) $\left(4 \times 10^{5}\right) \div\left(2 \times 10^{2}\right)$
16. Do these calculations using your calculator:
(a) $\left(8 \times 10^{-3}\right) \div\left(4 \times 10^{2}\right)$
(b) $\left(5 \times 10^{3}\right) \div\left(4 \times 10^{-2}\right)$
(c) $\left(3.2 \times 10^{6}\right) \div\left(1.6 \times 10^{2}\right)$
(d) $\left(4.8 \times 10^{-5}\right) \div\left(1.6 \times 10^{-2}\right)$
17. Do these calculations using your calculator:
(a) $2 \times 10^{2} \times 10^{3}$
(b) $10^{2} \times 10^{3}$
(c) $10^{4} \times 10^{-3}$
(d) $10^{3} \div\left(2 \times 10^{2}\right)$
(e) $10^{6} \div 10^{-2}$
(f) $\quad 10^{-3} \div\left(2 \times 10^{-2}\right)$
18. Do these calculations using your calculator:
(a) $\left(3.0 \times 10^{8}\right) \div\left(200 \times 10^{3}\right)$
(b) $\left(10^{3}\right)^{2}$
(c) $\left(10^{2}\right)^{3}$
(d) $10^{6} \times 10^{-4}$
(e) $10^{8} \div\left(2 \times 10^{-5}\right)$
(f) $10-3 \div 10^{-5}$
19. Express the following as percentages:
(a) 10 out of 100
(b) 20 out of 500
(c) 300 out of 1000
(d) 35 out of 100
(e) 36 out of 200
(f) 0.2 out of 4.0
20. Calculate: (a) 10% of 250
(b) 25% of 840
(c) 12.5% of 400
(d) 30% of 10^{3}
(e) 25% of 2.4×10^{6}
21. With your calculator, use the $1 / x$ button (or x^{-1}) to calculate $1 / x$ for each of these values of \mathbf{x} :
(a) 5
(b) 10
(c) 25
(d) 0.02
(e) 2×10^{-6}

Basic Algebra

1. Find the value of \mathbf{x} in each example:
(a) $2 x=4$
(b) $3 x=15$
(c) $3 x=0.24$
(d) $5 x=45.5$
(e) $\mathrm{x} / 2=6$
(f) $x / 3=3$
(g) $x / 5=4$
(h) $2 x / 3=8$
(i) $3 x / 4=3$
2. Find the value of \mathbf{x} in each example:
(a) $x^{2}=4$
(b) $x^{2}=16$
(c) $x^{2}=25$
(d) $x^{2}=100$
(e) $\sqrt{ } x=2$
(f) $\sqrt{ } x=3$
(g) $\sqrt{ } x=12$
(h) $x^{3}=125$
(j) $\mathrm{x}^{3}=1000$
(k) $3 \sqrt{ } x=2$
(I) $3 \sqrt{x}=3$
(m) $x^{2} \div 2=50$
(n) $x^{2} \div 4=16$
3. Find the value of \mathbf{x} in each example:
(a) $2 x+3=7$
(b) $3 x-2=7$
(c) $2 x-2=x-1$
(d) $3 x+4=13$
(e) $3 x+2=2 x-3$
(f) $x^{2}+1=5$
(g) $x^{2}+4=13$
(h) $x^{2}-2=14$
(i) $2 x^{2}-5=27$
(j) $2 x^{3}-4=50$
(k) $3 x^{2}+9=36$
(I) $2 \sqrt{ } x=10$
4. Calculate the value of each of the following expression if $x=2, y=4$ and $z=5$:
(a) x^{2}
(b) x^{3}
(c) x^{5}
(d) y^{3}
(e) $y^{1 / 2}$
(f) $y^{3 / 2}$
(g) z^{2}
(h) z^{3}
5. Some calculator screens display the 'answer' of a calculation as 203 which should be interpreted as 2×10^{3}. (That is: 2 multiplied by 10, three times $=2000$). It must not be taken to mean the same as 2^{3} which means $2 \times 2 \times 2(=8)$.
For each of the following, write down what number is shown by the calculator screen in 'normal' form, (e.g. $203=2000$).
(a) 204
(b) 303
(c) 4.305
(d) $\quad 2.3^{-03}$
(e) 9.7-04
(f) 6.7306
6. For each of these physics equations, change the subject of the equation:
(a) $F=$ ma, so $a=$?
(b) $F=m a$, so $m=$?
(c) $\mathbf{v}=\mathbf{f} \lambda$, sof $=$?
(d) $v=f \lambda$, so $\lambda=$?
(e) $\mathbf{Q}=\mathbf{I t}$, so $\mathbf{I}=$?
(f) $\mathbf{Q}=\mathbf{I t}$, so $\mathbf{t}=$?
(g) $\mathbf{V}=\mathbf{E} / \mathbf{Q}$, so $E=$?
(h) $\mathbf{V}=\mathbf{E} / \mathbf{Q}$, so $\mathbf{Q}=$?
(i) $\mathbf{a}=(\mathrm{v}-\mathrm{u}) / \mathbf{t}$, so $\mathbf{v}=$?
(j) $a=(v-u) / t$, so $t=$?
(k) $v=d / t$, so $d=?$
(l) $v=d / t$, so $t=?$
(m) $E=m g h$, so $m=? \quad$ (n) $E=\frac{1}{2} \mathbf{m v}^{2}$, so $m=? \quad$ (o) $E=\frac{1}{2} \mathbf{m} v^{2}$, so $v=$?
(p) $\quad \mathrm{pV} / \mathbf{T}=\mathbf{R}$, so $\mathrm{p}=$?
(q) $\mathrm{pV} / \mathrm{T}=\mathbf{R}$, so $\mathrm{V}=$?
(r) $\mathbf{p V} / \mathbf{T}=\mathbf{R}$, so $\mathbf{T}=$?

Errors and Uncertainties

1. For the following sets of measurements, calculate, in each case
(i) the mean and
(ii) the approximate random uncertainty:
(a) $10 \mathrm{~N}, 15 \mathrm{~N}, 13 \mathrm{~N}, 13 \mathrm{~N}, 14 \mathrm{~N}, 17 \mathrm{~N}, 11 \mathrm{~N}, 16 \mathrm{~N}$
(b) $2.3 \mathrm{~m}, 2.6 \mathrm{~m}, 1.9 \mathrm{~m}, 2.3 \mathrm{~m}, 2.0 \mathrm{~m}, 2.2 \mathrm{~m}, 2.2 \mathrm{~m}, 1.8 \mathrm{~m}, 2.5 \mathrm{~m}, 2.4 \mathrm{~m}$
(c) $510 \mathrm{~g}, 522 \mathrm{~g}, 508 \mathrm{~g}, 496 \mathrm{~g}, 498 \mathrm{~g}, 519 \mathrm{~g}, 509 \mathrm{~g}, 515 \mathrm{~g}$
2. In each case, the absolute uncertainty in a measurement is stated. Calculate the percentage uncertainty.
(a) $\left(3.2^{+} /-0.2\right) \mathrm{m}$
(b) $\left(4.8^{+} /-0.4\right)$ volts
(c) $\left(0.83^{+} /-0.05\right) \mathrm{cm}$
(d) $\left(2100{ }^{+} /-25\right) \mathrm{cm}^{3}$
(e) $\left(6.2^{+} /-0.3\right) \times 10^{3} \Omega$
(f) $\quad(2.01+/-0.02) \mathrm{A}$
3. State which situations would give systematic, reading, calibration or random uncertainties:
(a) a thermometer constantly reading two degrees too high
(b) a spread of readings of radioactive background count
(c) a newton balance with a sticky barrel
(d) an experimenter reading the pointer of an analogue voltmeter from one side
(e) making a measurement with a metre stick to half of one millimetre
(f) a meter which the manufacturer states is accurate to ${ }^{+} /-2 \%$
(g) bathroom scales which have not been zeroed
(h) measurements, with the same digital balance, of the weight of a number of 'identical' peas
(i) a pupil repeatedly reading the wrong scale on a dual scale meter
(j) a class of pupils making individual measurements of the height of the room
4. State the reading and uncertainty in the form (reading $+/$ - uncertainty) for each of these measurements and calculate the percentage uncertainty:
(a)

(b)

(c)

(g)

Answer File

Speed

1. $10 ; 330 ; 400 ; 3300 ; 1.5 \times 10^{9} ; 128 ; 300 ; 4 ; 50$
2. $\quad 5.48 \mathrm{~m} / \mathrm{s}$
3. 105 m
4. 80 s
5. 10.8 km
6. 2 h 22 m
7. $\quad 3 \mathrm{~h} 6.3 \mathrm{~m}$
8. $181 \mathrm{~m} / \mathrm{s}$
9. $18.8 \mathrm{~m} / \mathrm{s}$
10. 11 d 2 h
11. 12 h
12. $40 \mathrm{~km} / \mathrm{h}$
13. 37.5 km
14. 3
15. 0.05 s
16. (a) $0.1 \mathrm{~m} / \mathrm{s}$ (b) $10 \mathrm{~cm} / \mathrm{s}$
17.

$9.7 \mathrm{~m} / \mathrm{s}$
18. $19 \mathrm{~m} / \mathrm{s}$
19. 90 m
20. Yes, 61.6 m to stop
21. 10 h
22. $50 \mathrm{~m} / \mathrm{s}$
23. $\quad 1.54 \mathrm{~m} / \mathrm{s}$
24. $0.17 \mathrm{~s} \quad 25.9 .46 \times 10^{12 \mathrm{~m}}$

Acceleration

1. $4 ;-10 ; 25 ; 7.5 ; 2.0 ; 0.01$
2. $5 ; 7 ;-2.5 ;-4 ; 0 ; 40 ; 12 ; 0 ; 10 ; 0 ; 5 ; 60 ; 40 ; 2 ; 10 ; 6 ; 7$
3. $3.5 \mathrm{~m} / \mathrm{s}^{2}$
4. $5 \mathrm{~m} / \mathrm{s}^{2}$
5. $3 \mathrm{~m} / \mathrm{s}^{2}$
6. $22.5 \mathrm{~m} / \mathrm{s}$
7. (a) $4 \mathrm{mph} / \mathrm{s}$ (b) $1.8 \mathrm{~m} / \mathrm{s}^{2}$
8. $-6 \mathrm{~m} / \mathrm{s}^{2}$; decelerating \quad 9. $14 \mathrm{~s} \quad$ 10. $10 \mathrm{~m} / \mathrm{s}$; no, initial speed not known
9. $17 \mathrm{~m} / \mathrm{s}$
10. $1.6 \mathrm{~m} / \mathrm{s}^{2}$
11. $250 \mathrm{~cm} / \mathrm{s}^{2} ; 2.5 \mathrm{~m} / \mathrm{s}^{2}$
12. $66.7 \mathrm{~m} / \mathrm{s}^{2}$
13. 9 s
14. -
15. $2500 \mathrm{~m} / \mathrm{s}^{2}$
16. $8 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$
17. $2 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2}$
18. (a) $0.4 \mathrm{~m} / \mathrm{s}$ (b) $3.4 \mathrm{~m} / \mathrm{s}$

Equations ot motion

1. m / s
2. average velocity
3. $17 \mathrm{~m} / \mathrm{s}$
4. $12 \mathrm{~m} / \mathrm{s} ; 24 \mathrm{~m}$
5. displacement; metre
6. 90 m
7. $16 \mathrm{~m} / \mathrm{s}$
8. initial velocity; extra velocity due to acceleration
9. 5 s
10. m / s
11. $20 \mathrm{~m} / \mathrm{s}$
12. $14 \mathrm{~m} / \mathrm{s}$
13. 4 s ; back at starting position
14. $4 \mathrm{~m} / \mathrm{s}^{2}$
15. 6 s
16. 20 m
17. $40 \mathrm{~m} / \mathrm{s}$
18. velocity
19. 4 m further $208.9 \mathrm{~m} / \mathrm{s}$
20. $10.4 \mathrm{~s} ; 38.5 \mathrm{~m} / \mathrm{s}$
21. 225 m
22. 75 m
23. displacement
24. $25 \mathrm{~m} / \mathrm{s}$; 125 m 26.75 m 27. $9.5 \mathrm{~m} / \mathrm{s}^{2}$
25. 2 s
26. $12.2 \mathrm{~m} / \mathrm{s}$
27. $4 \mathrm{~m} / \mathrm{s}^{2}$
28. 250 m
29. $4 \mathrm{~s} ; 50 \mathrm{~m} / \mathrm{s}$ at 530 to horizontal
30. 6.5 s
31. $27.5 \mathrm{~m} / \mathrm{s}$
32. 2.5 s
33. $10 \mathrm{~m} / \mathrm{s}^{2}$ down
34. $10 \mathrm{~s} ; 3464 \mathrm{~m}$
35. 900 m
36. 5 s ; no
37. (a) 60 s
(b) 60 s

Vertical Motion

1.

(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $20 \mathrm{~m} / \mathrm{s}$
(c) $30 \mathrm{~m} / \mathrm{s}$
(d) $34 \mathrm{~m} / \mathrm{s}$
(e) $6.0 \mathrm{~m} / \mathrm{s}$
2.
(a) 5.0 m
(b) 20 m
(c) 45 m
(d) 57.8 m
(e) 1.8 m
3.
(a) 3.0 s
(b) 3.0 s
4. 16.2 m
5. 80 m
6. $\quad 1.4 \mathrm{~s}$
7. 18 s ; no
8. $\quad 3.75 \mathrm{~m} / \mathrm{s} 2$
9. $2.6 \mathrm{~m} / \mathrm{s}$
10.
(a) 20 m
(b) 1.0 s
11.
(a) $20 \mathrm{~m} / \mathrm{s}$
(b) $30 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) $44 \mathrm{~m} / \mathrm{s}$
(e) $16 \mathrm{~m} / \mathrm{s}$
12.
(a) 15 m
(b) 40 m
(c) 75 m
(d) 91.8 m
(e) 7.8 m
13.
(a) $20 \mathrm{~m} / \mathrm{s}$ up
(b) $8.0 \mathrm{~m} / \mathrm{s}$ down
(c) $18 \mathrm{~m} / \mathrm{s}$ down
(d) $22 \mathrm{~m} / \mathrm{s}$ down
(e) $6.0 \mathrm{~m} / \mathrm{s}$ up
14.
(a) 7.0 m up
(b) 4.0 m up
(c) $\quad 9.0 \mathrm{~m}$ down
(d) 17 m down
(e) 5.4 m up
15. $\quad 3.0 \mathrm{~s} ; 45 \mathrm{~m}$
16. $\quad 39.2 \mathrm{~m}$
17. (a) 44 m up; $12 \mathrm{~m} / \mathrm{s}$; up
(b) 48 m up; $8.0 \mathrm{~m} / \mathrm{s}$; down
(c) $10 \mathrm{~m} / \mathrm{s} 2$ down
18. (a) $10 \mathrm{~m} / \mathrm{s} 2$ down (b) 2.0 s
19.
(a) 1.5 s
(b) 11.25 m
(c) 3.0 s
(d) 20 m below top of well
(e) 50 m
20. $\quad 16.2 \mathrm{~m}$
21. $\quad 162 \mathrm{~m} 22$.
(a) $30 \mathrm{~m} / \mathrm{s}$
(b) 45 m

Graphs - straight line motion

1. slope proportional to acceleration
2. v

3. v

4. (a) distance
(b) displacement
5.

6.

7.

8.

9. straight line passing through origin
10. (a) change of momentum (b) change of velocity
11. (a) acceleration (b) speed
12. (a) force-time
(b) speed-time
(c) accel.-time
13. $2.5 \mathrm{~m} / \mathrm{s}^{2}$
14. not moving
15. constant speed
16. increasing speed
19. d

17. decreasing speed 18. constant velocity
20. zero 21. constant acceleration from rest
22. (a)

(b) a

23. constant acceleration from a non-zero initial velocity
24. a

25. constant deceleration to rest
28. a

26. a

29. Decreasing acceleration from rest
30.

31. Decreasing deceleration to rest
32. a

33. Constant acceleration
34. (a)

(b) d

35.
(b) A
(c) A
36. both are uniform
37. v

38. Uniform acceleration for 5 seconds, then constant speed for 10 seconds followed by uniform deceleration over last 5 seconds.
39.
(a) 50 m
(b) 300 m
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $4 \mathrm{~m} / \mathrm{s}^{2}$
40. Uniform accel. for 5 s , then constant speed for 5 s , same accel. for further 5 s and finally uniform decel. to rest.
41.
(a) 50 m
(b) 150 m
(c) 400 m
(d) $20 \mathrm{~m} / \mathrm{s}$
(e) $8 \mathrm{~m} / \mathrm{s}^{2}$
42. Uniform accel. for 10 s , then larger accel. for 5 s followed by uniform decel. to rest.
43. (a) 50 m
(b) 125 m
(c) 175 m
(d) $8.75 \mathrm{~m} / \mathrm{s}$
(e) $1 \mathrm{~m} / \mathrm{s}^{2}$
(f) $2 \mathrm{~m} / \mathrm{s}^{2}$
44. straight line; through origin
45. Kinetic energy against square of speed
46. velocity against time
47. distance against square of time
48. $3 \mathrm{~m} / \mathrm{s}^{2} ; 262.5 \mathrm{~m}$
50.
(a) $2 \mathrm{~m} / \mathrm{s}^{2}$
(b) 100 m
49. $2.5 \mathrm{~m} / \mathrm{s}^{2} ; 355 \mathrm{~m} ; 11.8 \mathrm{~m} / \mathrm{s}$
52.
(a) $-3 \mathrm{~m} / \mathrm{s}^{2}$
(b) 150 m
53. (a) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
(b) 60 m
54. (a) $-2 \mathrm{~m} / \mathrm{s}^{2}$
(b) 96 m
55. (a) $12 \mathrm{~m} / \mathrm{s}$
(b) $22 \mathrm{~m} / \mathrm{s}$ 56. $\mathrm{v}(\mathrm{m}$

58. $\mathrm{v}(\mathrm{m} / \mathrm{s})$
59. (a) $30 \mathrm{~m} / \mathrm{s}$
(b) $30 \mathrm{~m} / \mathrm{s}$
60. $\mathrm{v}(\mathrm{m} / \mathrm{s}) \quad(\mathrm{d}=78 \mathrm{~m})$
61. (a) $80 \mathrm{~m} / \mathrm{s}$ (b) $100 \mathrm{~m} / \mathrm{s}$
62.

Using vectors

1. -
2. weight \& acceleration
3. speed \& mass
4. -
5. -
6.

(a) 7 km
(b) 5 km 0530
7. -
8. (a) 66 yards
(b) 66 yards north
9. $\quad 3.2 \mathrm{~m} / \mathrm{s} 180$ to direction of rowing
10. $2.5 \mathrm{~m} / \mathrm{s} 0370$
11.
(a) 8.0 s
(b) $3.6 \mathrm{~m} / \mathrm{s} 560$ to bank
(c) 16 m west of B
(d) 42 east of $A B ; 10.7 \mathrm{~s}$

Resolving Vectors

1.
2.

(a) 0.50
(b) 0.87
(c) 0.87
(d) 0.50
(e) 0
(f) 1.0
(g) 5.0
(h) 25
(i) 42.4
(j) 42.4
3.
(a) 7.4 N
(b) $\quad 5.4 \mathrm{~N}$
(c) $2.7 \mathrm{~m} / \mathrm{s}^{2}$
4. A; vertical component of push adds to roller's weight
5.
(a) 4.0 N
(b) 9.0 N upwards
6. (a) $18 \mathrm{~m} / \mathrm{s}$ at 30^{0} to pitch
(b) (i) $15.6 \mathrm{~m} / \mathrm{s}$ (ii) $9.0 \mathrm{~m} / \mathrm{s}$ upwards
7.
(a)
(i) 10 N
(ii) 17.3 N
(b) (i) 12 N
(ii) 48.5 N
8.
(a)
(i) $18 \mathrm{~m} / \mathrm{s}$
(ii) $24 \mathrm{~m} / \mathrm{s}$
9. $\quad 0 \mathrm{~N}(\mathrm{~b}) ; \quad 71 \mathrm{~N}(\mathrm{a}) ; \quad 36 \mathrm{~N}(\mathrm{~d}) ; \quad 134 \mathrm{~N}(\mathrm{c})$

Projectiles

1. $c ; e ; g ; i ; j$ (others all have at least one force, other than gravity acting)
2. horizontal
3. vertical
4. all $9.8 \mathrm{~m} / \mathrm{s}^{2}$ vertically
5. -
6. -
7. parabola
8. (a) 0.40 s
(b) 24 cm
9.

(a) 4.0 s
(b) $15 \mathrm{~m} / \mathrm{s}$
(c) $43 \mathrm{~m} / \mathrm{s}$ at 690 below horizontal
10. $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$ vertically down
11.
(a) both $35.4 \mathrm{~m} / \mathrm{s}$
(b) $0 \mathrm{~m} / \mathrm{s}$
(c) 64 m
(d) $9.8 \mathrm{~m} / \mathrm{s}^{2}$ vertically down
(e) 7.2 s
(f) 255 m
12.
(a) $21 \mathrm{~m} / \mathrm{s}$ at 290 below horizontal
(b) $26 \mathrm{~m} / \mathrm{s}$ at 450 below hor.
(c) $30 \mathrm{~m} / \mathrm{s}$ at 530 below horizontal
(d) $35 \mathrm{~m} / \mathrm{s}$ at 590 below hor.
(e) $55 \mathrm{~m} / \mathrm{s}$ at 710 below hor.
13.
(a) 3.0 s
(b) $50 \mathrm{~m} / \mathrm{s}$ at 530 below hor.
(c) 80 m
(d) $120 \mathrm{~m}(\mathrm{e}) \quad 125 \mathrm{~m}(\mathrm{f}) \quad 10 \mathrm{~m} / \mathrm{s}^{2}$ vertically down
14. $60 \mathrm{~m} / \mathrm{s}$
15. $41 \mathrm{~m} / \mathrm{s}$ at 560 below horizontal
16.
(a) $7.0 \mathrm{~m} / \mathrm{s}$
(b) $8.0 \mathrm{~m} / \mathrm{s}$ at 290 below horizontal
17. (a) 34 m
(b) $20 \mathrm{~m} / \mathrm{s}$ at 410 below horizontal
(c) 26 m above level of cliff
(d) 8.1 s
(e) $15 \mathrm{~m} / \mathrm{s}$ horizontally; $9.8 \mathrm{~m} / \mathrm{s} 2$ vertically down
18.
(a) 370
(b) 2.4 s
(c) $20 \mathrm{~m} / \mathrm{s}$
19.
(a) $9.8 \mathrm{~m} / \mathrm{s}^{2}$ vertically down (b) 7.9 m
(c) $14 \mathrm{~m} / \mathrm{s}$ at 680 below horizontal20. $65 \mathrm{~m} / \mathrm{s}$
21.
(a) (i) 110 m
(ii) 120 m
(iii) 126 m
(iv) 128 m
(v) 126 m
(vi) 120 m
(b) 45^{0}

Unbalanced force

(a) 5 N right
(b) 2 N right
(c) 0 N
(d) 2 N left
(e) 6 N left
(f) 0 N
(g) 3 N right (h) 0 N
(i) 1 N left
(j) 2 N right
(k) 2 N right
(I) 1 N down
(m) 8 N up
(n) 0 N
$F=m a(1)$
(a) $2 \mathrm{~m} / \mathrm{s}^{2}$ right
(b) $4 \mathrm{~m} / \mathrm{s}^{2}$
right
(c) $0.5 \mathrm{~m} / \mathrm{s}^{2}$ left
(d) $1 \mathrm{~m} / \mathrm{s}^{2}$ right
(e) $0 \mathrm{~m} / \mathrm{s}^{2}$
(f) $1 \mathrm{~m} / \mathrm{s}^{2}$ left
(g) $2 \mathrm{~m} / \mathrm{s}^{2}$ right
(h) $1.6 \mathrm{~m} / \mathrm{s}^{2}$ left
(i) $0 \mathrm{~m} / \mathrm{s}^{2}$ (j) $0 \mathrm{~m} / \mathrm{s}^{2}$
(k) $0.5 \mathrm{~m} / \mathrm{s}^{2}$ left (I) $10 \mathrm{~m} / \mathrm{s}^{2}$ down
(m) $1 \mathrm{~m} / \mathrm{s}^{2}$ up (n) $0.5 \mathrm{~m} / \mathrm{s}^{2}$ down

F = ma (2)

1. $0 ; 8 ; 1 ; 0 ; 10 ; 0.25 ; 2 ; 0.5$
2. 112 N
3. 0
4. 800 N
5. 259 N
6. 3600 N
7. (a) 12 N
(b) 12 N
8. 2.5 N
9. $4500 \mathrm{~N} ; 2.5 \mathrm{~m} / \mathrm{s}^{2}$
10. 400 N
11. 3250 N
12. 550 N
13. 580 N
14. 30 kN
15. 450 N
16. (a) $0.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) 420 N
17. (a) $1.6 \mathrm{~m} / \mathrm{s}^{2}$; 1920 N
(b) 2370 N
18. $5 \mathrm{~N} ; 2 \mathrm{~m} / \mathrm{s}^{2}$
19. (a) $0.75 \mathrm{~m} / \mathrm{s}^{2} ; 900 \mathrm{~N}$ (b) 900 N
20. 20 N
21. $0.5 \mathrm{~m} / \mathrm{s}^{2}$
22. $-0.25 \mathrm{~m} / \mathrm{s}^{2}$
23. $600 \mathrm{~N} ; 500 \mathrm{~N}$
24. (a) 700 N (b) $0.7 \mathrm{~m} / \mathrm{s}^{2}$
25. (a) 0 N (b) constant velocity (c) acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$
26. (a) 5 N (b) deceleration of $0.05 \mathrm{~m} / \mathrm{s}^{2}$ (c) $10 \mathrm{~s} \quad 27.0 .8 \mathrm{~N} \quad 28.8 \mathrm{~N}$
27. 28 N
28. $2 \times 10^{4} ; 3000 ; 1000 ; 15 ; 800 ; 0.05 ; 10 ; 32$
29. (a) 50 N up
(b) 550 N
30. (a) 800 N
(b) 800 N
31. $6.25 \times 10^{6} \mathrm{~N}$
32. 100 N down
33. $875 \mathrm{~N} ; 700 \mathrm{~N}$
34. 630 N
35. (a) 60 N up (b) 460 N
36. (a) 120 N down (b) 680 N
37. (a) 120 N down
(b) 480 N
38. (a) 80 N up
(b) $1 \mathrm{~m} / \mathrm{s}^{2}$ up
39. (a) 60 N down
(b) $1 \mathrm{~m} / \mathrm{s}^{2}$ down
40. $0.3 \mathrm{~m} / \mathrm{s}^{2}$ up
41. (a) 0 N (b) constant speed up or down or at rest
42. $600 \mathrm{~N} ; 1.5 \mathrm{~m} / \mathrm{s}^{2}$ up
43. $510 \mathrm{~N} ; 600 \mathrm{~N}$ 46. (a) $1 \mathrm{~m} / \mathrm{s}^{2}$ (b) 3 N 47. (a) $0.5 \mathrm{~m} / \mathrm{s}^{2}$ (b) 4 N
44. $3 \mathrm{~m} / \mathrm{s}^{2} ; 18 \mathrm{~N}$
45. (a) $3 \mathrm{~m} / \mathrm{s}^{2}$
(b) 9 N (c) 9 N
46. (a) $1.5 \mathrm{~m} / \mathrm{s}^{2}$
(b) 6 N
(c) 12 N
(d) 9 N
47.

(a) $0.5 \mathrm{~m} / \mathrm{s}^{2}$
(b) 2 N
(c) 4 N
52. (a) 375 kN
(b) 2.875 MN
53.
(a) 6.9 kN
(b) 10.6 kN
54. 30 tonnes
55. 1.4 N
56. 28000 N

1. (normal) reaction; same size 2. lift; same size 3. -
2. (a) tension (b) difference between lengths of upthrust and weight vectors; downwards
3. upthrust; equal in size to weight 6. -
4. (a) three tensions
(b) tension (up) and weight (down)
5. reaction (upwards)
6. tension
7. (a) tension in cords and reaction of wall (b) tension in cords

Blocks on Surfaces (1)

1. $2.5 \mathrm{~m} / \mathrm{s}^{2}$
2. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 2.0 \mathrm{~N}$
3. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 3.0 \mathrm{~N}$
4. $\quad 0.5 \mathrm{~m} / \mathrm{s}^{2} ; 2.0 \mathrm{~N}$
5. $1.5 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{T}_{1}=6.0 \mathrm{~N} ; \mathrm{T}_{2}=18 \mathrm{~N}$
6. $\quad 4.0 \mathrm{~m} / \mathrm{s}^{2} ; 40 \mathrm{~N}$
7. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{m}=2.5 \mathrm{~kg}$
8. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2} ; 4 \mathrm{~kg}$
9. $\mathrm{T}_{1}=5.0 \mathrm{~N} ; \mathrm{T}_{2}=14 \mathrm{~N}$
10. $0.5 \mathrm{~m} / \mathrm{s}^{2}$ left; $\mathrm{T}=21 \mathrm{~N}$
11. $2.0 \mathrm{~m} / \mathrm{s}^{2}$ right; $\mathrm{T}_{1}=58 \mathrm{~N} ; \mathrm{T}_{2}=70 \mathrm{~N}$

Blocks on Surfaces (2)

1. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 6.0 \mathrm{~N}$
2. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 1.5 \mathrm{~N}$
3. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 3.0 \mathrm{~N}$
4. $6 \mathrm{~kg} ; 6.0 \mathrm{~N}$ right

Blocks on Surfaces (3)

1. $0 \mathrm{~m} / \mathrm{s}^{2} ; 3.0 \mathrm{~N}$
2. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 6.0 \mathrm{~N}$
3. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2} ; 12 \mathrm{~N}$
4. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2} ; 6.0 \mathrm{~N}$
5. $0 \mathrm{~m} / \mathrm{s}^{2} ; 0 \mathrm{~N}$
6. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 3.0 \mathrm{~N}$
7. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2} ; 8.0 \mathrm{~N}$
8. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2} ; 4.0 \mathrm{~N}$
9. $0 \mathrm{~m} / \mathrm{s}^{2} ; 0 \mathrm{~N}$
10. $\quad 4.0 \mathrm{~m} / \mathrm{s}^{2} ; 12 \mathrm{~N}$
11. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2} ; 4.0 \mathrm{~N}$
12. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 10 \mathrm{~N}$
13. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2} ; 16 \mathrm{~N}$
14. $\quad 1.0 \mathrm{~m} / \mathrm{s}^{2} ; 3.0 \mathrm{~N}$
15. $3 \mathrm{~kg} ; 10 \mathrm{~N}$ right
16. 20 N
17. 50 N
18. 30 N each
19. 50 N each
20. $\mathrm{T}_{1}=60 \mathrm{~N} ; \mathrm{T}_{2}=40 \mathrm{~N}$
21. $\mathrm{T}_{1}=80 \mathrm{~N} ; \mathrm{T}_{2}=60 \mathrm{~N} ; \mathrm{T}_{3}=40 \mathrm{~N}$
22. $\mathrm{T}_{1}=25 \mathrm{~N} ; \mathrm{T}_{2}=25 \mathrm{~N} ; \mathrm{T}_{3}=20 \mathrm{~N}$
23. $\mathrm{T}_{1}=80 \mathrm{~N} ; \mathrm{T}_{2}=20 \mathrm{~N} ; \mathrm{T}_{3}=40 \mathrm{~N}$

Masses on surfaces

1. $27^{\circ} ; 4.54 \mathrm{~m} / \mathrm{s}^{2}$
2. $20^{\circ} ; 3.4 \mathrm{~m} / \mathrm{s}^{2}$
3. $38^{\circ} ; 6.2 \mathrm{~m} / \mathrm{s}^{2}$
4. $50^{\circ} ; 7.7 \mathrm{~m} / \mathrm{s}^{2}$
5. $27^{\circ} ; 2.0 \mathrm{~m} / \mathrm{s}^{2}$
6. $20^{\circ} ; 1.75 \mathrm{~m} / \mathrm{s}^{2}$
7. $380 ; 3.2 \mathrm{~m} / \mathrm{s}^{2}$
8. $50^{\circ} ; 1.0 \mathrm{~m} / \mathrm{s}^{2}$
9. (a)(i) 38°
(ii) 42°
(iii) 18^{0}
(b) no
10. $2.5 \mathrm{~m} / \mathrm{s}^{2} ; 7.5 \mathrm{~N} ; 7.5 \mathrm{~N}$
11. $\quad 0.33 \mathrm{~m} / \mathrm{s}^{2} ; 0.33 \mathrm{~N} ; 0.33 \mathrm{~N}$
12. $2.5 \mathrm{~m} / \mathrm{s}^{2} ; 5 \mathrm{~N} ; 15 \mathrm{~N}$
13. $\quad 1.5 \mathrm{~m} / \mathrm{s}^{2} ; 2.25 \mathrm{~N} ; 4.25 \mathrm{~N}$

Action and reaction

1. equal; opposite
2. same
3. should be " force of apple on Earth"
4. force of gases on rocket
5. force on apple on Earth
6. cart pulling on horse
7. force of ball on foot
8. force exerted by Moon on Earth
9. force of water on compressed air
10. opposite to car's motion; forward force of road on tyre
11. 250 N ; opposite to direction of ball's motion
12. 25 N down
13. $20 ; 50 ; 20 ; 1500 ; 12 ; 500$
14. $14000 \mathrm{kgm} / \mathrm{s}$
15. $12 \mathrm{kgm} / \mathrm{s}$
16. No loss of E_{k}
17. $2.4 \times 10^{8} \mathrm{kgm} / \mathrm{s}$
18. $800 \mathrm{kgm} / \mathrm{s}$
19. $2000 \mathrm{kgm} / \mathrm{s}$
20. 1200 kg
21. 50 kg
22. $80 \mathrm{~m} / \mathrm{s}$
23. $28000 \mathrm{kgm} / \mathrm{s}$
24. zero
25. $24 \mathrm{~cm} / \mathrm{s} ; 0.096 \mathrm{~J}$
26. $10 \mathrm{~cm} / \mathrm{s}$ to the right
27. $25 \mathrm{~cm} / \mathrm{s}$ to the right
28. zero; zero 17. $2.4 \mathrm{~m} / \mathrm{s}$ in direction of 1500 kg car
29. $20 \mathrm{~cm} / \mathrm{s} ; 0.35 \mathrm{~J}$
30. (a) $0.5 \mathrm{kgm} / \mathrm{s}$ to right (b) $10 \mathrm{~cm} / \mathrm{s}$ to right
31. (a) $0.5 \mathrm{kgm} / \mathrm{s}$ to left
(b) $5 \mathrm{~cm} / \mathrm{s}$ to left
32.

(a) $2 \mathrm{~m} / \mathrm{s}$ to right
(b) 64000 J
22. $4 \mathrm{~cm} / \mathrm{s}$ to right
23.
(a) zero
(b) $100 \mathrm{~cm} / \mathrm{s}$ to right
24.
(a) $12 \mathrm{~cm} / \mathrm{s}$ (b) 0.054 J
25. $15 \mathrm{~m} / \mathrm{s}$ up
26. $6 \mathrm{~m} / \mathrm{s}$ to right
27. $0.6 \mathrm{~m} / \mathrm{s}$ to left
28. $1 \mathrm{~m} / \mathrm{s}$ to right
29. $2 \mathrm{~m} / \mathrm{s}$ to left
30.
(a) 4 kg
(b) 6 J
31. $8 \mathrm{~m} / \mathrm{s}$; 192 kJ

Impuise and IMomentum

1. - 2. $\mathrm{kgm} / \mathrm{s} 3$. vector; has direction
1. rate; change 5. newton-second (Ns)
2. vector; has direction
3. -
4. 1.0 \& $1 ; 0 ; 10 \& 10 ; 10 \& 10 ; 10 \& 10 ; 0.10 \& 0.10 ; 0.50 \& 0.50 ; 1.0 \& 2.0$
$10 \& 1.0 ; 50000 \& 50 ; 5000 \& 100 ; 0.005 \& 0.20 ; 0.0002 \& 5.0 \times 10^{-4} ;$
2.0×10^{6} \& 10
5.

(a) 5.0 Ns
(b) $5.0 \mathrm{kgm} / \mathrm{s}$
10. (a) 8.0 Ns
(b) mass
11. 5.0 Ns
12. (a) $2.0 \mathrm{kgm} / \mathrm{s}$
(b) 2.0 Ns
13. (a) $1.5 \mathrm{kgm} / \mathrm{s}$
(b) $\quad 1.5 \mathrm{Ns}$
(c) time of contact not known
14. 1500 N
15. (a) $30 \mathrm{~m} / \mathrm{s}$
(b) 450 N
16. impulse
17. -
18. (i)
(a) 20 Ns (b) $10 \mathrm{~m} / \mathrm{s}$
(c) 10 N
(ii) (a) $10 \mathrm{Ns}(\mathrm{b}) \quad 5.0 \mathrm{~m} / \mathrm{s}$
(c) 5.0 N
(iii)
(a) 30 Ns (b) $15 \mathrm{~m} / \mathrm{s}$
(c) $\quad 5.0 \mathrm{~N}$
19.
(a) $6.0 \mathrm{kgm} / \mathrm{s}$ left
(b) $\quad(+) 9 \mathrm{kgm} / \mathrm{s}$

vveignt

1. 20; 45; 4.8; 33; 80; 300; 9.8; 3.7
2. (a) 15 N
(b) 32 N
(c) 5 N
(d) 20000 N
(e) $3.2 \times 10^{6} \mathrm{~N}$ (f) $10^{5} \mathrm{~N}$
(g) 0.35 N
(h) 0.026 N
(i) 3.5 N
3. $26 \mathrm{~N} / \mathrm{kg}$
4. $6.5 \mathrm{~N} / \mathrm{kg}$
5. $1.6 \mathrm{~N} / \mathrm{kg}$
6. $3 \mathrm{~m} / \mathrm{s}^{2}$
7. $26 \mathrm{~N} / \mathrm{kg} ; 3.7 \mathrm{~N} / \mathrm{kg} ; 9.8 \mathrm{~N} / \mathrm{kg} ; 11.3 \mathrm{~N} / \mathrm{kg}$
8. $90 \mathrm{~kg} ; 144 \mathrm{~N}$
9. $340 \mathrm{~N} ; 85 \mathrm{~kg}$
10. (a) 75 kg (b) 75 kg
11. (a) 80 kg
(b) 784 N
12. $55 \mathrm{~kg} ; 770 \mathrm{~N}$
13. $0.23 \mathrm{~N} / \mathrm{kg}$
14. No; the craft and astronauts fall at same rate
15. (a) vertically down
(b) vertically down
(c) vertically down
16. (a) 800 N
(b) 800 N
(c) 800 N
(d) 800 N
17. Child (4 N more)
18. (a) 90 kg
(b) 90 kg
(c) $3.7 \mathrm{~N} / \mathrm{kg}$
19. $60 \mathrm{Nup} ; 3 \mathrm{~m} / \mathrm{s}^{2}$ up
20. 4.32 kg
21. (a) 2850 N
(b) $5.7 \mathrm{~m} / \mathrm{s}^{2}$

Work

1. $50 ; 15000 ; 5 ; 30000 ; 200 ; 0.1 ; 900$
2. 1000 J .42 J
3. 24 N
4. None
5. 400 J
6. 3 kJ
7. direction
8. 20 m
9. 80 cm
10. 120 kg
11. 2 MJ
12. 10 km
13. heat
14. (gravitational) potential energy
15. kinetic energy
16. kinetic and potential energy
17. potential energy
18. 600 kJ
19. 45 J
20. 5 m
21. None; force not moved in its own direction
22. 225 kJ
23. 8000 N
24. 5700 N

Kinetic Energy

1. $1 ; 2 ; 25 ; 10 ; 4 ; 10 ; 0.02 ; 6 ; 10 ; 0.1 \quad$ 2. 157.5 kJ 3. $9 \mathrm{~J} 4.5 .3 \mathrm{~m} / \mathrm{s}$
2. 3 kg
3. 25 J 7. proportional; square
4. 180 kJ
5. $4 \mathrm{~m} / \mathrm{s}$
6. $20 \mathrm{~m} / \mathrm{s}$ 11. 50 g 12. 12800 J 13. 4000 J 14. 1440 MJ
7. 1200 kg 16. $6 \mathrm{~m} / \mathrm{s}$ 17. $10 \mathrm{~m} / \mathrm{s} 18.20 \mathrm{~g}$
8. E_{k} increases by four times 20. $2000 \mathrm{~J} \quad$ 21. $23 \mathrm{~J} \quad$ 22. 1300 kg
9. $8.4 \times 10^{8} \mathrm{~J}$
10. 60 kg
11. Energy against square of speed
12. (a) $10 \mathrm{~m} / \mathrm{s}$
(b) 450 kJ
(c) 75 kJ

Potential Energy

1. $60 ; 100 ; 1.2 \times 10^{7} ; 3 ; 2000 ; 10 ; 1.6 ; 50 ; 3.72 .6000 \mathrm{~J}$
2. 2700 J
3. 2.45 m
4. 1200 J
5. 2400 J
6. approx. 48 kJ
7. (a) 6010 J
(b) kinetic energy
8. 3 kg rock (18 J more)
9. 200 MJ
10. 30 J
11. 15 MJ
12. 15 m
13. $3.7 \mathrm{~N} / \mathrm{kg}$
14. 75 kg
15. 60 kg
16. 1800 J
17. 1.8 MJ 1927 J

Potential Energy to and from Kinetic Energy

1. (a) $10 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
2. (a) 15 J
(b) 15 J
(c) $10 \mathrm{~m} / \mathrm{s}$
3. $40 \mathrm{~m} / \mathrm{s}$
4. 0.45 m
5. (a) $2 \mathrm{~m} / \mathrm{s}$
(b) 20 cm
6. 120 J
7. 100 J
8. $18 \mathrm{~m} / \mathrm{s}$
9. heat
10. $11.8 \mathrm{~m} / \mathrm{s}$
11. (a) 64 J
(b) $8 \mathrm{~m} / \mathrm{s}$
12. 0.45 m
13. (a) 1.25 m
(b) smaller; less Ep gained
14. (a) middle
(b) highest point
(c) elastic potential energy

Power

1. $50 ; 10000 ; 400 ; 10000 ; 2 \times 10^{8} ; 60 ; 0.002$ 2. $500 \mathrm{~W} \quad 3.450 \mathrm{~kJ}$
2. 128 W
3. 1.5 kW
4. 300 s
5. 6 kW
8 (a) 2000 J
(b) 400 W
6. 500 W
7. 50 mins
8. 18 kJ
9. (a) 12 N
(b) 360 J
(c) $72 \mathrm{~J} / \mathrm{s}$
10. T's $=4 \times$ S's
11. 9 MJ
12. 0.2 W
13. 200 W
14. 3 m
15. 480 W
16. 30 s
17. 2 s
18. 25 W
19. 20 kW
20. 432 kJ
21. 150 W
22. 25 m
23. 31.5 kW

Efficiency

1. useful; total 2. output; total \quad 3. heat
2. no; always some energy losses
3. can't get more energy out than put in
4. 60%
5. 70%
6. 8%
7. 300 J
8. 720 J
9. (a) 6%
(b) 94 J
10. 3 mins.
11. 1.2 kW
12. (a) 120 kJ
(b) heat
13. 250 W
14. 40 J
15. (a) 2 W
(b) 67%
16. 150 J
17. 7.5 W
18. (a) 2 J
(b) 40%
19. (a) 24 W
(b) 18 W
(c) 75%
20. 67 \%
21. 63 \%
22. 27%
23. (a) 24 J
(b) 20 J
(c) 83%
24. (a) 36 J
(b) 20 N
25. 76 \%
26. 50 kW
27. 84%

Electrostatics

1. charge; gaining; losing
2. negative; positive
3. positive; negative
4. (a) pushed away
(b) same
(c) repel
5. (a) pulled towards rod
(b) attract
6.

fig 1

Charge = current \mathbf{x} time

1. $30 ; 36 ; 30 ; 2400 ; 4 ; 5$
2. 600 C
3. 36 C
4. 4 A
5. 50 s
6. 40 s
7. 1.35 C
8. 30 s
9. 45 mC
10. charge
11. 4320 C
12. 20 hours
13. 12 s
14. 0.72 C
15. 2.5 mA
16. 1800 C
17. (a) 7.5 C
(b) 7.5 C
18. (a) lamp1: 10 C ; lamp 2: 6 C
(b) 16 C
(c) 16 C
19. 20000 A
20. 300 mA
21. 6912 C
22. 1000 C
23. doubled
24. 150 C

Potential difference $=$ energy \div charge

1. 12; 9; 12; 5000; 2025; 3450
2. voltage
3. work done; charge
4. 12 V
5. 25 V
6. 24 J
7. 3 V
8. 36 J
9. 15 J
10. 150
11. 18 mJ
12. 18 J
13. 2.5 C
14. volt
15. 6 V
16. 109 J
17. 1.2 V
18. 24 J
19. $3.2 \times 10^{-16} \mathrm{~J}$
20. 60 C
21. 9 V
22. 25 J
23. $2.4 \times 10^{-4} \mathrm{~J}$
24. $9.6 \times 10^{-15} \mathrm{~J}$
25. $7.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$
26. $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$

Ohm's Law

1. $6 ; 18 ; 20 ; 3 ; 0.05 ; 0.0036 ; 1.2 ; 230 \quad$ 2. 535Ω 3. 2 A
2. 26.7Ω
3. $\quad 1.33 \mathrm{~A}$
4. 9 V
5. (a) 0.15 A
(b) 0.75 mA
(c) 1.5 mA
6. 12.5Ω
7. $4.5 \mu \mathrm{~A}$ 10. resistance increases with temperature
8. current; proportional; temperature
9. straight line through origin
10. resistance
11. 20Ω
12. increases
13. 24Ω
$P=I V=I^{2} R=V^{2} / R$
14. $60 ; 2300 ; 20 ; 4 ; 12 ; 6$
15. 8.7 A
16. approx. 60 W
17. 0.5 W
18. 12 V
19. 200 W
20. 10Ω
21. 1000 W
22. 40 W
23. 9.1 A
24. 10 A
25. 192 W
26. 960 W
27. 100 W
28. power
29. 960Ω
30. 500 W
31. 720 W
32. 8%
33. 176Ω
34. 4 x
35. watt
36. approx. 320 mA
37. (a) 30 W
(b) 200 W
(c) 135 W
38. 1000 J
39. 690 W
40. 2.7 A 28. 26Ω
41. 146 mA
42. 9Ω; series 2. $1350 \Omega \quad$ 3. $4 \Omega \quad$ 4. $480 \Omega \quad$ 5. 5Ω; parallel
43. 2Ω
44. (a) $1 \mathrm{k} \Omega$
(b) 3Ω
(c) 8Ω
45. (a) 1Ω
(b) 5Ω
(c) 40Ω
46. (a) 10Ω
(b) 2Ω
47. (a) 10Ω
(b) 15Ω
48. (a) 3Ω
(b) 4Ω
(c) 4Ω
49. (a) 6Ω
(b) 12Ω
(c) 8Ω
50. (a)
51. 60Ω
52. less
53. 20Ω
54. 0Ω
55. (a) infinite (b) 0Ω
56. 100Ω
57. 20Ω
58. $3 \mathrm{~V} ; 3 \mathrm{~V}$
59. 6Ω in parallel with 3Ω in parallel with two 1Ω resistors in series
60. $60 \Omega ; 30 \Omega \quad$ 25. $2 \Omega \quad$ 26. $12 \Omega ; 4 \Omega$
61. 10Ω in series with parallel combination of others
62. 10Ω in series with parallel combination of other two

Circuit Rules

1. series with lamp; as low as possible
2. parallel with lamp; as large as possible
3. ammeter should be in between resistors and in series with them
4. voltmeter should be connected across both ends of resistor A
5. (a) $P=3 A ; Q=3 A$
(b) $P=1 A ; Q=3 A$
6. (a) 2 V
(b) 3 V
7. $A_{1}: 2 \mathrm{~A} ; \mathrm{A}_{2}: 3 \mathrm{~A} ; \mathrm{V}_{1}: 2 \mathrm{~V} ; \mathrm{V}_{2}: 4 \mathrm{~V}$
8. $\mathrm{A}_{1}: 0.3 \mathrm{~A} ; \mathrm{A}_{2}: 0.2 \mathrm{~A} ; \mathrm{A}_{3}: 0.6 \mathrm{~A} ; \mathrm{V}_{1}: 3 \mathrm{~V} ; \mathrm{V}_{2}: 1 \mathrm{~V} ; \mathrm{V}_{3}: 3 \mathrm{~V}$
9. voltmeter used instead of ammeter

Circuits

1. (a) lamps light (b) both lamps off (c) series
2. (a) both lamps light (b) lamp B stays on (c) parallel
3. (a) none
(b) none (c) all lamps lit
(d) A
4. (a) resistor
(b) fuse
(c) earth
(d) ammeter
(e) cell
5. (a) S 1
(b) S 1 and S 2
(c) not possible
6. (a) parallel
(b) no
(c) S 1 and S 2 or S 3
(d) all switches
(e) yes, either or both
7. (a) on (b) off then on again (c) off
8. (a) diode
(b) microphone
(c) voltmeter
(d) battery
(e) variable resistor
9. (a) no, diode blocks current
(b) yes, diode conducts
10. speed increases because full 12 volts now across motor.

11-24 (answers not supplied)

General circuit problems

1. watt
2. ohm
3. 225 J
4. 0.5 mA
5. 7.5Ω in series with parallel combination of 5Ω and 2Ω and 3Ω in series
6. $1.2 \mathrm{k} \Omega$
7. 2Ω
8. 3.33 V
9. parallel; series
10. parallel
11. 0.1 A 12. 3.4 V
12. same at all points
13. yes, if two are in parallel
14. ampere
15. coulomb
16. $2 \mathrm{~A} ; 12 \mathrm{~V}$
17. 2.5 C
18. 8.2 V
19. 0 to 8 volts
20. $20 \mathrm{~V} ; 1 \mathrm{~A}$ 22. 4 V

Internal Resistance

1. electromotive force 2. volt 3. ohm 4. volt
2. terminal potential difference
3. (a) drops (b) difference between voltmeter readings (c) current
4. open; no current drawn from cell
5.

(a) 1.65 V (b)
0.13 V
9. -
10. (a) 1.55 V
(b) $\quad 1.40 \mathrm{~V}(\mathrm{c}) \quad 1.32 \mathrm{~V}$
(d) 0.30 V
11. heat
12.
(a) $4 \mathrm{~V} ; 2 \Omega$
(b) $6 \mathrm{~V} ; 3 \Omega$
(c) $2 \mathrm{~V} ; 0.5 \Omega$
(d) $6 \mathrm{~V} ; 1.5 \Omega$
(a) $1.5 \mathrm{~V} ; 0 \mathrm{~A}$
(b) $1.2 \mathrm{~V} ; 0.3 \mathrm{~A}$
13.
14. (a) $2.0 \mathrm{~V} ; 0 \mathrm{~A}$
(b) $1.9 \mathrm{~V} ; 0.2 \mathrm{~A}$
15. (a) $1.2 \mathrm{~V} ; 0 \mathrm{~A}$
(b) $1.08 \mathrm{~V} ; 0.6 \mathrm{~A}$
16.
(a) $0.20 \mathrm{~V}(\mathrm{~b}) \quad 0.80 \Omega$
(c) 5.20Ω
17.
(a) $\quad 0.40 \mathrm{~A}(\mathrm{~b}) \quad 1.6 \mathrm{~V}$
(c) 9Ω
18. $0.2 \mathrm{~A} ; 1.2 \mathrm{~V}$
19.
(a) 1.5 V
(b) $\quad 0.3 \mathrm{~A} ; 1.2 \mathrm{~V}$
(c) $0.5 \mathrm{~A} ; 1.0 \mathrm{~V}$
20.
(a) $\quad 0.20 \mathrm{~A}(\mathrm{~b}) \quad 0.04 \mathrm{~W}$
(c) 1.8 V
21.
(a) $\quad 0.50 \mathrm{~A}(\mathrm{~b}) \quad 0.20 \mathrm{~W}$
(c) 1.1 V
22.
(a) $\quad 1.02 \mathrm{~A}(\mathrm{~b}) \quad 0.18 \mathrm{~A}$
23. 0.89Ω
24. Ammeter reading falls, voltmeter reading increases
25. (a) 1.0 W (b) 1.8 W (c) 720 W
26. (a) - (b) e.m.f. (c) (negative of) internal resistance
27. (a) - (b) (negative of) internal resistance (c) e.m.f.
28.
(a) 6.0 V
(b) 2.0Ω
29. -
30. -
31.
32.
(a) -
(b) -
(c)
(d) e.m.f.
(d) (negative of) internal resistance

Voltage or rotential Dividers

1. -
2. (a) (Voltage across) R_{1} is 5.0 V ; R_{2} is 5.0 V
(b) R_{1} is 8.0 V ; R_{2} is 2.0 V
(c) R_{1} is $3.0 \mathrm{~V} ; \mathrm{R}_{2}$ is 9.0 V
(d) R_{1} is 20 V ; R_{2} is 30 V
(e) R_{1} is $4.0 \mathrm{~V} ; \mathrm{R}_{2}$ is 1.0 V
(f) $\quad R_{1}$ is 14.4 V ; R_{2} is 5.6 V
3.

(a) $0-8 \mathrm{~V}$ (b) $0-2.0 \mathrm{~V}$
(c) $0-3.0 \mathrm{~V}$
(d) $0-10 \mathrm{~V}$
(e) $0-4.0 \mathrm{~V}$
4. (a) 6.0 V (b) drops; smaller resistance (c) 4.0 V
5. $\mathrm{AB}-2 \mathrm{~V} \quad \mathrm{BC}-4 \mathrm{~V} \quad \mathrm{CD}-6 \mathrm{~V} \quad \mathrm{AC}-6 \mathrm{~V} \quad \mathrm{BD}-10 \mathrm{~V} \quad \mathrm{AD}-12 \mathrm{~V}$
6.
(a) 0 V
(b) 2.0 V
(c) 1.5 V
(a) $6.0 \mathrm{~V} ; 4.0 \mathrm{~V}$
(b) $5.0 \mathrm{~V} ; 4.0 \mathrm{~V}$
(c) $9.6 \mathrm{~V} ; 6.0 \mathrm{~V}$
(d) $4.0 \mathrm{~V} ; 6.0 \mathrm{~V}$
7.
8.
(a) $9 \mathrm{~V} ; 7.2 \mathrm{~V} ; 3.0 \mathrm{~V}$
(b) 600Ω

vVneatstone Briage

1. potential
2. (a) 3.0 V
(b) 3.0 V
3.

(a) $\quad(+) 1.5 \mathrm{~V}$
(b) -1.5 V
8. no change
5. not equal
6. equal
7. $P / Q=X / R$
11. $63(\Omega) ; 102 ; 5 ; 125 ; 14 ; 41.5 ; 0.20 ; 8860$
12.
(i) yes
(ii) yes
(iii) no
(iv) yes
(v) yes
13.
(a) $P / R=Q / S$
(b) $\quad S / R=Q / P$
(c) $P S=Q R$
(d) $\quad Q=P S / R$
(e) $\quad R=P S / Q$
(f) $\quad S=R Q / P$
(g) $P=R Q / S$
14.
(a) 200Ω
(b) 80Ω
(c) 125Ω
(d) 32.3Ω
(e) 332Ω
(f) 5.23Ω
15. unbalanced 16. zero 17. adjust to balance bridge
18. $X / R=I /(100-I)$
19. $70.0 \mathrm{~cm}, 25.7 \Omega ; 50.0 \mathrm{~cm} ; 120 \Omega ; 40.0 \mathrm{~cm}, 36 \Omega$;
$54.5 \mathrm{~cm}, 419 \Omega ; 43.6 \mathrm{~cm}, 329 \Omega ; 50.0 \mathrm{~cm}, 98 \Omega ; 54.3 \mathrm{~cm}, 699 \Omega ; 47.7 \mathrm{~cm}, 2289 \Omega$
20. no change
24. yes
27. reverse reading (+ to - or vice versa)

1. $6 ; 15 ; 1 ; 4 ; 80 ; 5 ; 500 \mathrm{~W} ; 3 \mathrm{~kW} ; 100 \mathrm{~W} \quad$ 2. $4 \mathrm{kWh} ; 28 \mathrm{p}$
2. 40 hours 4.800 W
3. 100 hours
4. 3600000 J
5. 2.5 kWh
6. lamp cheaper (7.2 kWh and fire 7.5 kWh)
7. 14 p
8. 100 hours
9. $£ 76.44$
10. 1 kW
11. 450 units; 150 hours
12. (a) $10 \mathrm{~A}(9.2 \mathrm{~A})$
(b) $3 \mathrm{~A}(0.42 \mathrm{~A})$
(c) $13 \mathrm{~A}(12.5 \mathrm{~A})$
(d) $5 \mathrm{~A}(4.2 \mathrm{~A})$
(e) $10 \mathrm{~A}(5.4 \mathrm{~A})$
13. protects wiring from overheating 16. melts
14. metal case; makes fuse melt if case becomes 'live'
15. brown and blue only
16. earth wire; plastic not conductor so cannot be 'earthed'
17. plastic not conductor so unsuitable for 'earthing' current
18. 23.3 A 22. 1200 W
19. thicker; carries larger current before melting
20. fuse becomes warm and is attached to live pin
21. live; cuts off high voltage if melts
22. live; cuts of live voltage when switch is 'off'
23. could electrocute person if casing touched

Alternatıng current and voltage

1. number of cycles in unit time (second)
2.

(a) 60
(b) 300
(c) 600
(d) 30 (e) 7200
3. 50 Hz 4.88 Hz
5.
(a) (i) 2.5 V (ii) 5.0 V
(iii) 12.5 V
(iv) 25 V
(b) (i) 25 Hz (ii) 50 Hz
(iii) 250 Hz (iv) 500 Hz
6.
(ii) 100 Hz
(iii) 500 Hz
(iv) 1000 Hz
7. 0 V
8. root mean square
9.
(a) 3.5 V
(b) 7.1 V
(c) 110 V
(d) 240 V
(e) 230 V
10.
(a) 2.1 V
(b) 4.2 V
(c) 10.6 V
(d) 21 V
11.
(a) 20 V
(b) 300 V
(c) 10 V
(d) 282 V
(e) 57 mV
12. 14.2 V
13. 20 V
14. 7.1 A
15. -
16. 'height' is $2 . .8$ divisions; length of one whole cycle is 4 divisions

Electromagnetism

1. magnetic field
2. (a) -
(b) reverses
3. decreases
4. (a) switch closed
(b) larger voltage or more coils wound on core
5. doesn't become permanently magnetised; magnet can be switched on and off
6. (a) 90° to both
(b) reverse current or field
7.

(a) current

(b)

8. (a) arrow same size; pointing downward (b) current in opposite directions (c) commutator
9. (a) electromagnets (b) magnetised core increases field
(c) smoother running
10. change; magnetic; e.m.f.
11. (a) force pushes against opposing field set up by induced current
(b) force needs to be moved to do work

13
(a) B to A
(b) deflect to other side
(c) zero
(d) stronger field; faster motion; two or more loops of wire moved through field
14. magnets arranged with same poles facing
15. direction; e.m.f.; oppose
16. (a) north (b) north opposes motion of magnet etc.
(c) work done by force in moving magnet
(d) south
17. would accelerate magnet, producing kinetic energy without any work being done
18. induced e.m.f. always acts against motion of pedals which produce it etc.
19.
(a) changing flux in coil
(b) none
(c) none
20. (a) changing field round left coil causes changing flux in second coi
(b) transformer 21.
(a)

(b)

22. wind coil of conducting wire round core, supply current to it with batter

1. $500 ; 200 ; 600 ; 20 ; 10 ; 240$
2. 200
3. 5750
4. (a) 80 V
(b) 12 V
(c) 0 V
(d) 10 V
(e) 400 V
(f) 120 V
5. equal
6. 24 W
7. 0.1 A
8. (a) 4 A
(b) 0.21 A
9. 29; step-down
10. 479

11.

(a) 72 V a.c.
(b) 0 V
(c) 1380 V a.c.
12. 12 V a.c.; 50 Hz
13. 5000 V a.c.; 50 Hz
14. 0 V
15. (a) $30 \mathrm{~W} ; 24 \mathrm{~W}$
(b) 6 J
16. (a) 0.1 J
(b) 83.3%
17. $0.1 \mathrm{~A}, 0.4 \mathrm{~A}$

Power Transmission

1. (a) $2 \mathrm{~A} ; 4 \mathrm{~W}$ (b) $0.2 \mathrm{~A} ; 0.04 \mathrm{~W}$ 2. low power loss
2. (a) 20 kW
(b) 0.02 W
3. (a) 2 A (b) 8 J (c) 8 V (d) 16 W (e) first steps voltage up by factor of 10 from supply, second steps voltage down by factor of 10 at lamp end of wire

Electric fields

1. 20 V
2.

(a) 40 V
(b) $\quad 6.4 \times 10^{-18} \mathrm{~J}(\mathrm{c})$
$3.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(a)
$8.0 \times 10-17 \mathrm{~J}(\mathrm{~b})$
$1.3 \times 10^{7} \mathrm{~m} / \mathrm{s}$
4. (a) $4.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$ (b) 5800 V
3.

Capacıtance

1. $2.0 \times 10^{-6} \mathrm{~F} ; 2.0 \times 10^{-3} \mathrm{~F} ; 1.0 \times 10^{-4} \mathrm{~F} ; 0.6 \mathrm{C} ; 1.35 \times 10^{-11} \mathrm{C} ; 12 \mathrm{~V} ; 200 \mathrm{~V}$
2.

(a) $2.0 \mu \mathrm{~F}$
(b) $16 \mu \mathrm{~F}$
(c) $10 \mu \mathrm{~F}$
(d) $0.1 \mu \mathrm{~F}$
3. -
4. $8.0 \mu \mathrm{~F}$
5.
(a) $10 \mu \mathrm{~F}$
(b) $3.0 \times 10^{-5} \mathrm{C}$
6. $9.0 \times 10^{-4} \mathrm{C}$
7. $1.5 \times 10^{-12} \mathrm{C}$
8.
(a) 0.012 C
(b) 0.012 C
9.
(a) 5000 F
(b) +0.06 C
10. 0.09 C
11.
(a) right side circuit(b)
12. -
13. 0.36 J
14. $3.24 \times 10^{-4} \mathrm{~J}$
15. 12 V
16.
(a) 0.041 J
(b) 0.041 J
17. 0.012 C
18. capacitance
19. energy (stored)
20. (A)
(a) $1.0 \mu \mathrm{~F}$ (b) $5 \times 10^{-5} \mathrm{~J}$
(B) (a) $20 \mu \mathrm{~F}$ (b) $1.44 \times 10^{-3} \mathrm{~J}$
21.
(a) 9.0 mA
(b) 12 mA
22. (a) 3.0 mA
(b) 3.0 V
23. 1.0 mA
24. (a) 8.0 s
(b) $4.0 \mathrm{k} \Omega$
25. 0.072 J
26.
(a) 5.8 V
(b) $5.8 \times 10^{-3} \mathrm{C}$
(c) 8.4 mA
27. (a) $10 \mathrm{~mA}(\mathrm{~b}) \quad 5.0 \mathrm{~mA}$
28. charge 29. equal areas (same total charge) 30. -
31. (a) 9.0 V (battery voltage)
(b) - (c) -
32. 12 V
33. (a)
(i) 7.0 V
(ii) 5.5 V
(iii) 2.8 V (iv) 0.7 V
(b) 4.5 mA
(c) 9.0 V
(d) 0 V
(e) 0.0198 C
(f) 1.5 mA
34. - 35. (a) reactance decreases as capacitance increases
(b) reactance decreases as frequency increases
36. straight line through origin
37. (a) increases (e.g. less opposition to current)
(b) decreases
38.
(a) position X
(b) -
(c) -
39. (a)
(b) 9.0 V
40.
(a) -
(b) $V_{/(R 1+R 3)}$
(c) $\quad V_{/(R 2+R 3)}$
(d) no effect
(e) $1.8 \times 10^{-4} \mathrm{C}$
(f) $8.1 \times 10^{-4} \mathrm{~J}$

Electronics

1. process 2. thermistor, microphone, LDR, pressure switch
2. (a) 7 V
(b) 2 V
(c) 10 mA
(d) 200Ω
3. 400Ω
4. 5 V
5. battery or LED connected 'wrong way round'
6. value of ' R ' too large
7. $50 \mu \mathrm{~A}$
8. 500 x
9. $20 \mu \mathrm{~A}$
10. (a) (i) 0 V
(ii) 6 V
(b) (i) 6 V (ii) 0 V
11. (a) ON
(b) ON
(c) transistor and LED switch OFF
12. Reverse 'R' and ' S '
13. (a) increases
(b) decreases
(c) 2.6 V
14. No, would do opposite
15. (a) increases
(b) decreases
(c) 2.8 V
16. (a) -
(b) value of ' R ' increased
17.

(a) zero
(b) increases quickly then more slowly
(c) 9 V
19.
(a) value of ' R '; value of ' C '
(b) increase value of ' R ' or ' C '
20. (a) battery (b) curve should reach same voltage but take longer
21.
(a) decreases
(b) increases
(c) 3.6 V
22. (a) -
(b) increase value of ' R ' or ' C '
23. 0; 0
24. $0 ; 1 ; 0 ; 1,1$
25. $0 ; 1 ; 1,1 ; 1,1$
26. (a) NOR
(b) NAND
27.

INPUTS			OUTPUTS	
A	B	C	D	Z
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

28.

INPUTS			OUTPUTS		
A	B	C	D	E	Z
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	1	0

29. use OR gate
30. NOT gate on sensor and AND gate
31.

Analogue tlectronics

1. $-\quad$ 2. (a) $0 V \quad$ (b) $-2.0 \mathrm{~V} \quad$ (c) -5.0 V (d) $-10 \mathrm{~V} \quad$ (e) 4.0 V
(f) $\quad 12 \mathrm{~V}$ (g) $\quad 7.0 \mathrm{~V}$
(h) -14 V approx. (saturation)
(i) $\quad+14 \mathrm{~V}$ (sat.)
2.

(a) 0 V
(b) -2.0 V
(c) $\quad-5.0 \mathrm{~V}(\mathrm{~d}) \quad-9.5 \mathrm{~V}(\mathrm{e}) \quad 2.0 \mathrm{~V}$
(f) 12 V
(g) 7.0 V
(h) -14 V (saturation)
(i) 14 V (sat.)
4.
(a) (i) 0 V
(ii) -3.0 V
(iii) -5.4 V
(iv) 3.6 V
(v) 8 V approx. (saturation)
(vi) - 8 V (saturation)
(b) (v) would be 12 V
5. $120 \mathrm{k} \Omega$
6.
(a) $\quad 0.20 \mathrm{~V}(\mathrm{~b}) \quad-0.15 \mathrm{~V}$
(c) -3 mV (d) $\quad 0.05 \mathrm{~V}$
(e) 0 V
(f) $2 \mu \mathrm{~V}$
(g) $\quad-0.24 \mathrm{~V}$
7. (a) $10 \mathrm{k} \Omega$ (b) $20 \mathrm{k} \Omega$ (c) $50 \mathrm{k} \Omega$ (d) $5 \mathrm{k} \Omega \quad$ (e) $100 \mathrm{k} \Omega \quad$ (f) $1 \mathrm{k} \Omega$
8. (a) $50 \mathrm{mV}(\mathrm{b}) \quad 200 \Omega$
9.
(a) $1 \mathrm{k} \Omega$
(b) $2 \mathrm{k} \Omega$
(c) $5 \mathrm{k} \Omega$
(d) $10 \mathrm{k} \Omega$
(e) $12 \mathrm{k} \Omega$
(f) -14 V
10. (a) - 12 V
(b) -6.0 V
11.
(a) $1 \& 10(b) 5 \& 500$
(c) $100 \& 5$ or $20 \& 10$
(d) $5 \& 20$
12. (a) - (b) square wave (due to saturation) 13. - 14.- \quad 15. 0.08 V approx.
16. (a) 10-0-10 volts approx. (b) approx. 8 to 9 times
17.
(a) $30 \mathrm{k} \Omega$
(b) inverted
18. (a) -
(b) output is (inverse) sum of inputs
19.
(a) 0 V
(b) -2.0 V
(c) 2.0 V
(d) 0 V
(e) $\quad-9.0 \mathrm{~V}(\mathrm{f}) \quad-1.0 \mathrm{~V}(\mathrm{~g}) \quad-6.0 \mathrm{~V}(\mathrm{~h}) \quad 1.0 \mathrm{~V}$
20.
(a) 0 V
(b) -3.0 V
(c) 3.0 V
(d) -1.0 V
(e) $\quad-10 V(f) \quad-6.0 V(g) \quad-6.0 V(h) \quad-3.0 V$
21.
22.
(a) -
(b) (i) 2.0 V (ii) 0 V
(iii) -1.0 V
(iv) 0 V
(v) 7.0 V (vi) -8.0 V
(vii) 6.6 V
(viii) 14 V (sat.)
23.
(a) (i) 1.0 V (ii) 2.0 V
(iii) 0.50 V
(iv) 1.0 V
(v) 5.0 V (vi) 0.20 V
(vii) 10 V
(viii) 14 V (saturation)
(b) all negative, same magnitudes

Speed of sound

1. (a) 340 m
(b) 680 m
(c) 3570 m
(d) 170 m
(e) 0.34 m
2. $1500 \mathrm{~m} / \mathrm{s}$
3. 4.5 s
4. (a) 2500 m
(b) 2 ms
5. $\quad 5.1 \mathrm{~km}$
6. (a) -
(b) 850 m
7. 0.29 s
8. 238 m
9. $270 \mathrm{~m} / \mathrm{s}$
10. (a) $309 \mathrm{~m} / \mathrm{s}$ (b) -

Speed of light

1. (a) $300000000 \mathrm{~m} / \mathrm{s}$
(b) $300000 \mathrm{~km} / \mathrm{s}$
2. 185000 miles per second
3. (a) $6 \times 10^{8} \mathrm{~m}$
(b) $1.05 \times 10^{9} \mathrm{~m}$
(c) $3 \times 10^{7} \mathrm{~m}$
(d) $6 \times 10^{6} \mathrm{~m}$
(e) 3000 m
(f) 1230 m
4. (a) 4 s
(b) 0.5
(c) $10^{-5} \mathrm{~s}$
(d) $2 \times 10^{-6} \mathrm{~s}$
5. $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
6. $3.84 \times 10^{8} \mathrm{~m}$
7. 0.24 s
8. -

(e) $3.15 \times 10^{7} \mathrm{~s}$
9. 8.33 min
10. $6.3 \times 10^{11} \mathrm{~m} \quad 11.3 .25 \mathrm{~ms}$
$\mathrm{V}=\mathrm{f} \lambda$
$\begin{array}{llll}\text { 1. } 25 ; 1 ; 100 ; 2 ; 150 ; 4.8 ; 620 ; 9 \times 10^{7} & \text { 2. } 45 & \text { 3. } 1280\end{array}$
4. 0.017 s
5. 1 kHz
6. 4 cm
7. 0.02 s ; period
8. 1.33 Hz
9. 0.2 s
10. 0.25 s
11. 0.25 Hz
12. 512 Hz
13. 1.7 m
14. 0.05 m
15. 5 m
16. $5200 \mathrm{~m} / \mathrm{s}$
17. (a) $2.5 \times 10^{-5} \mathrm{~s}$
(b) 8.5 mm
18. $7.5 \times 10^{-4} \mathrm{~m}$
19. 2.65 m
20. $10 \mathrm{~cm} / \mathrm{s}$
21. decreases
22. (a) $3.0 \mathrm{~m} / \mathrm{s}$
(b) 1.5 s
(c) 1.0 m
23. $18 \mathrm{~mm} ; 7.3 \mathrm{~cm}$
24. $4.4 \times 10^{14} \mathrm{~Hz} \quad 25.1515 \mathrm{~m}$
26. $3 \times 10^{-11} \mathrm{~m}$
27. 909 kHz
28. 261 m
29. 2.95 m
30. 200 kHz
31. $5 \times 10^{14} \mathrm{~Hz}$
32. $1.5 \times 10^{-10} \mathrm{~m}$
33. $3 \mathrm{~mm} ; 10^{-11} \mathrm{~s}$
34. -
35. 200 km

Wave properties

1. -
2. (a)-(d) no effect
3. (a)-(c) no effect
(d) concave after reflection
4. focus or focal point
5. return after reflection as plane parallel waves
6. - 7. (a) emerge as circular waves
(b) straight wave fronts with curved edges
1. -
2. refraction - change of wave speed in moving into different medium; diffraction - bending round edge of obstacle, with no change in wave speed.
3. - 11. destructive interference 12. constructive interference

Waves and Interference

1. same 2. time for one cycle 3. $f=1 \div T$
2. $\quad 0.5 \mathrm{~Hz} 5$.
(a) 10 Hz (b)
0.10 s
3. -
4.

(a) D
(b) D
(c) D
(d) $\quad A \& C$ (e) $\quad A \& B$
8. Interference
9. same frequency (wavelength) and constant phase difference
10.
(a) diagram A
(b) destructive interference
(c) diagram A
(d) diagram B
11. -
12.
(a) constructive
(b) constructive (c) destructive
(d) destructive
(e) constructive (f) destructive
(g) constructive
13. (a) constructive
(b) destructive
(c) constructive
(d) destructive
(e) constructive
14.
(a) 8.0 cm
(b) 4250 Hz
(c) 50 cm

Properties of light

1. (a)-(c) reflected rays all at same angle to normal as incident rays
2. reflection 3. -
3. (a) diagram 'b'
(b) diagrams 'a' (at infinity) and 'c'
4. same distance from mirror
5. (a) right side appears on left and vice versa
(b) - 7. -
6. real image - mirror ' a '; virtual image - mirror ' b '
7. refracted ray should be parallel to first ray
8. bends towards the normal 11. -
9. ray refracted into air in 'left' diagram; other ray is totally internally reflected
10. total internal reflection (T.I.R.)
11. -
12. blue ray refracted through larger angle than red
13. blue 17. constant
14. decreases
15. 1.37
16. (a) reflected
(b) refracted into air 21. 0.520
17. $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
18. 48.70
19. 391 nm
20. 49.50
21. 420
22. 1.44
23. 24.6^{0}
24. 34.5^{0}
25. 1.33
26. 1.61
27. $1.95 \times 10^{8} \mathrm{~m} / \mathrm{s}$
28. 1.58
29. 590 ray refracted into water; 630 ray totally internally reflected at surface
30. 66.2°
31. $2.26 \times 10^{8} \mathrm{~m} / \mathrm{s}, 770$ to normal
32. 49.70
33. $1.97 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 286 \mathrm{~nm}$
34. 1.48
35. 70.2^{0}
36. $4.9 \times 10^{-7} \mathrm{~m} ; 3.8 \times 10^{14} \mathrm{~Hz}$
37. $1.88 \times 10^{8} \mathrm{~m} / \mathrm{s} ; 4 \times 10^{14} \mathrm{~Hz} ; 4.7 \times 10^{-7} \mathrm{~m}$
38. -
39. -
40. Lens B focal length shorter
41. Lens B
42.

(a) 5 cm
(b) 40 cm
(c) 10 cm
(d) 7.1 cm
(e) 50 cm
48. +2.5 D
49. +5 D
50. 10 cm lens
51. does not really exist, just appears to
52. diverging
53. -
54. (a) 5 cm (b) - 55. - 56. - 57. - 58. - 59. - 60 -

Ray diagrams

1. (a) same size, distance, inverted, real
(b) enlarged, further from lens, inverted, real
(c) diminished,closer, inverted, real
(d) enlarged, image at 'infinity', upright, virtual
(e) diminished, closer, upright, virtual
2. infinity
3. (b) and (d)
4. (c) and (e)
5. twice focal length from lens
6. same orientation, enlarged, virtual
7. closer than principal focus
8. (a) same size, distance, inverted, real
(b) enlarged, further from lens, inverted, real
(c) enlarged, further from lens, on same side as object, upright, virtual
(d) diminished, closer and on same side as object, upright, virtual
9. (a) 40 cm from lens, 2 cm tall, real
(b) 60 cm from lens, 4 cm tall, real
(c) 20 cm from lens, 4 cm tall, virtual
(d) formed at 'infinity', virtual
(e) 6.67 cm from lens, 2 cm tall, virtual
(f) 40 cm from lens, 25 cm tall, virtual
10.
11. 4.5 cm
12. half size
13. 8 cm from lens
14. upright, virtual

Grating equation

1. -
2. (a) 0.0033 mm
(b) $3.33 \times 10^{-6} \mathrm{~m}$
3. (a) 0.0017 mm (b) $1.67 \times 10^{-6} \mathrm{~m}$
4.

(a) 644 mm
(b) 50.5^{0}
5. (a) 546 mm
(b) 21.3^{0}
6.
(a) 7.0^{0}
(b) 14.1^{0}
(c) yellow
7. (a) $1.25 \times 10^{-6} \mathrm{~m} \quad$ (b) 800 lines per mm
8.
(a) 0.060
(b) larger

inverse square iaw

1. \quad - $2 . \quad$ - 3 (a) $20 ; 3.2$
2. (a) (i) 16000
(ii) 2560
(iii) 256000
(b) 4.0 m
3. 4 m
4. (a) $128 \mu \mathrm{Svh}^{-1}$
(b) 8 m
(c) 11.3 m

Specific heat capacity

1. $84000 ; 84000 ; 20 ; 50 ; 20 ; 0.25 ; 4200 ; 450 \quad$ 2. $4400 \mathrm{~J} / \mathrm{kgK}$
2. 68040 J
3. (a) 240 kJ
(b) 4 mins
4. (a) 9.24 MJ
(b) 51 min 20 s
5. $2100 \mathrm{~J} / \mathrm{kgK}$
6. $440 \mathrm{~J} / \mathrm{kgK}$
7. $50^{\circ} \mathrm{C}$
8. 94.5 kJ
9. 42240 J
10. 819 J
11. $130 \mathrm{~J} / \mathrm{kgK}$
12. per unit mass
13. $40^{\circ} \mathrm{C}$
14. 10.5 mins
15. $24^{\circ} \mathrm{C}$
16. $3 \min 9 \mathrm{~s}$
17. $104^{\circ} \mathrm{C}$
18. (a) $16.6 \mathrm{MJ} \quad$ (b) 55 mins.

Specific latent heat

1. $668000 ; 167000 ; 10 ; 0.4 ; 835000 ; 452000 ; 130000 ; 290000$
2. $\quad 1.17 \times 10^{6} \mathrm{~J}$
3. $200400 \mathrm{~J} 4 . \quad 904000 \mathrm{~J}$
4. $100^{\circ} \mathrm{C}$
5.

20.3 g7. $\quad 50 \mathrm{~g}$
8. (a) 55 g
(b) 50 s
9. (a) $0^{\circ} \mathrm{C} \quad$ (b) in equilibrium with ice
10. (latent) heat in steam over and above heat in boiling water
11. (a) suspension of tiny water droplets in air (b) inside spout
12. $64000 \mathrm{~J} / \mathrm{kg} \quad$ 13. $294000 \mathrm{~J} / \mathrm{kg} \quad$ 14. melting ice $(48090 \mathrm{~J})>$ boiling water $(45200 \mathrm{~J})$
15. vinegar $(390 \mathrm{~kJ} / \mathrm{kg})>$ benzene $(400 \mathrm{~kJ} / \mathrm{kg})$
16. (a) cooling water - freezing water - cooling ice (b) $0^{\circ} \mathrm{C}$
(c) $-18^{\circ} \mathrm{C}$, same as freezer
17. (a) -
(b) $81^{\circ} \mathrm{C}$
(c) $24{ }^{\circ} \mathrm{C}$

Density

1. $1000 ; 1.43 ; 7500 ; 5 ; 50 ; 3.2 \times 10^{8} \quad$ 2. (a) 13.6 (b) 13600
2.
3. (a) 13.6
(b) 13600; mercury
4. $1200 \mathrm{~kg} / \mathrm{m}^{3}$
5. $38 \mathrm{~cm}^{3}$
6. $2.2 \mathrm{~cm}^{3}$
7. $8900 \mathrm{~kg} / \mathrm{m}^{3}$
8. 34 N
9. $170 \mathrm{~N} ; 17$ litres
10. sinks; density $=1.22 \mathrm{~g} / \mathrm{cm}^{3}$
11. floats; density $=0.92 \mathrm{~g} / \mathrm{cm}^{3}$
12. $1.25 \mathrm{~kg} / \mathrm{m}^{3}$
13. 73.8 kg
14. (a) $1480 \mathrm{~kg} / \mathrm{m}^{3} ; 1480 \mathrm{~g} / \mathrm{litre}$
(b) $270 \mathrm{~cm}^{3}$
15. $50 \mathrm{~cm}^{3}$
16. $8.96 \mathrm{~g} / \mathrm{cm}^{3}$
17. $\quad 474 \mathrm{~g}$
18. $0.24 \mathrm{~g} / \mathrm{cm}^{3}$
19. $11.5 \mathrm{~g} / \mathrm{cm}^{3}$
20. $19.3 \mathrm{~g} / \mathrm{cm}^{3}$; it is gold
21. 0.42
22. 562.5 tonnes
23. 5 cm
24. (a) 50 kg (b) $0.83 \mathrm{~g} / \mathrm{cm}^{3}$ (c) float; density less than that of water
25. 135 g
26. $35 \mathrm{~cm}^{3}$

Pressure

1. $5 ; 25000 ; 4 \times 10^{10} ; 4 \times 10^{-3} ; 4 \times 10^{-4} ; 2 ; 5000 ; 10000$
2. (a) $p A$
(b) $F \div p$
3. (a) 10 kPa
(b) 20 kPa
4. $3.75 \times 10^{7} \mathrm{~N}$
5. (a) 0.1
(b) 1000
6. 900 N
7. (a) 670 Pa
(b) 150 times smaller
8. 80 N
9. Shuffling; larger area in contact with ice, so less pressure exerted.
10.

(a) 1550 Pa (b) 5128 Pa
11. $1.14 \times 10^{7} \mathrm{~Pa} \quad$ 12. -
13. $10^{5} \mathrm{~Pa}$
]
14. 5 cm
15

16. 4500 Pa
17. 1.5 m
18. 26 kPa above atmospheric pressure
19. 9804 m
20. newton

Buoyancy and riotation

1. pressure directly proportional to depth
2. pressure directly proportional to density
3. straight line through origin
4. straight line through origin
5. upthrust; weight; displaced
6. (a) displaces 20000 t of water (b) 20000 tonnes
7.
8. (a) hot and low salinity (b)
9. -
10. $15 \mathrm{~cm}^{3}$
11. -
12.

(a) 6.4 N
(b) -
(c) $\quad 2.0 \mathrm{~N}$
(d) stays same
15.
(a) and (c) only
16.
(a) 12 N
(b) 12 N
17.
(a) 0.5 N
(b) $50 \mathrm{~cm}^{3}$
18. 1100 N
(a) -
(b) (i) no change
(ii) heavier
(iii) downwards
19.
20. carbon dioxide more dense than helium so weight of balloon is greatewr than the upthrust

Gas Laws

1. pressure against inverse of volume
2. 20,$300 ; 15,300 ; 10,300 ; 40,300 ; 50,300$
3. $4.04 \times 10^{5} \mathrm{~Pa} \quad$ 4. volume increases, pressure decreases
4. $x=120 ; y=20$
5. $3.2 \times 10^{5} \mathrm{~Pa}$
6. (a) halved
(b) doubled
7. $1.0 \times 10^{5} \mathrm{~Pa}$
8. pressure; absolute
9. absolute temperature
10. add 273
11.

(a) 273 K
(b) 373 K
(c) 293 K
(d) 310 K
(e) 0 K
(f) 77 K
(g) 600 K
(h) 546 K
13. (a) $-273^{\circ} \mathrm{C}$
(b) $0^{\circ} \mathrm{C}$
(c) $100^{\circ} \mathrm{C}$
(d) $21^{\circ} \mathrm{C}$
(e) $-12^{\circ} \mathrm{C}$
14. $23260 \mathrm{~m}^{3}$
15. $381 \mathrm{~cm}^{3}$
16. $253^{\circ} \mathrm{C}$
17. $100^{\circ} \mathrm{C}$ - actual temperature; $100 \mathrm{C}^{\mathrm{O}}$ - change of temp. 18. volume; absolute
19. absolute temperature 20. $1.45 \times 10^{5} \mathrm{~Pa}$
21. $16^{\circ} \mathrm{C}$
22. $-11^{\circ} \mathrm{C}$ 23. $1.37 \times 10^{5} \mathrm{~Pa}$ 24. $197^{\circ} \mathrm{C}$
25. $135^{\circ} \mathrm{C}$
26. $\quad 29.6 \mathrm{lb} / \mathrm{in}^{2}$
27. $9.3 \mathrm{~cm}^{3}$
28. 1603 kPa
29. $117 \mathrm{~cm}^{3}$
30. $392^{\circ} \mathrm{C}$ 31. $47 \mathrm{C}^{\mathrm{O}}$ 32. $5.05 \times 10^{5} \mathrm{~Pa}$
33. (a) 480 litres (b) 24 mins (c) 12 litres left in cylinder
34. $5 \mathrm{~cm}^{3}$
35. $1.01 \times 10^{5} \mathrm{~Pa}$
36. $44 \mathrm{lb} / \mathrm{in}^{2}$
37. less weight of air above
38. 1.46 atmospheres
39. 540

Radioactivity

1. (a) $6 p, 6 n$, carbon \quad (b) $6 p, 8 n$, carbon \quad (c) $92 p, 143 n$, uranium
(d) $92 p, 146 n$, uranium \quad (e) $82 p$, 136n, lead (f) $88 p$, 140n, radium
(g) $2 \mathrm{p}, 2 \mathrm{n}$, helium
2. (a) 2 less (b) 2 less \quad 3. (a) increases by 1 (b) decreases by 1
3. (a) no change (b) no change
4. (a)
(a) $X=234 ; Y=90$
(b) $X=234 ; Y=91$
(c) $\mathrm{X} 234 ; \mathrm{Y}=92 ; ?=\mathrm{U}$
(d) $X=218 ; Y=84$
(e) $\mathrm{X} 83 ; \mathrm{Y}=0 ; ?=\mathrm{Pb}$
(f) $X=14 ; Y=7 ; ?=N$
5. time for activity to decrease by one half
6. (a) one half
(b) one quarter
(c) one eighth
7. 6.25%
8. 2 days
9. 16 years
10. approx. 6.5 mins
11. approx. 19 days
12. 15 mins 14 . 22.2 days
13. 5.4×10^{9}
14. 7.5 decays per minute 17. 6 hours 18. 8 mins.
15. (a) 25 c.p.m. (b) 5 mins
16. approx 3 mins 21. approx. 6 hours
$E=m^{2}$
17. slightly less
18. mass lost
19. $E=m c^{2}$; energy, mass, speed of light
20. two
21. $X=138 ; Y=56$
22. $X=100 ; Y=42 ; Z=M o$
23. $3.3 \times 10^{-11} \mathrm{~J}$
24. $1.62 \times 10-28 \mathrm{~kg}$
25. nuclear fusion; energy
26. $3.6 \times 10^{26} \mathrm{~J}$
27. $E=m c^{2}$
28. $4.5 \times 10^{-13} \mathrm{~J}$
29. $9.8 \times 10^{-30} \mathrm{~kg}$
30.

(a) $\mathrm{Z}-\mathrm{Kr} ; \mathrm{x}-36 ; \mathrm{y}-4$
(b) $\mathrm{Z}-\mathrm{Xe} ; \mathrm{x}-54 ; \mathrm{y}-2$
(c) Z - $\mathrm{Mo} ; \mathrm{x}-137 ; \mathrm{y}-42$
5.
(a) $3.0 \times 10-28 \mathrm{~kg}$
(b) $E=2.7 \times 10^{-11} \mathrm{~J}$
(b) $3.6 \times 10-11 \mathrm{~J}$
6.
7.
(a) (i) 0.213 u (ii) $3.70 \times 10-28 \mathrm{~kg}$
(b) $3.33 \times 10^{-11} \mathrm{~J}$
8.
(a) (i) 0.0972 u (ii) $1.63 \times 10^{-28} \mathrm{~kg}$
(b) $1.47 \times 10^{-11} \mathrm{~J}$
9.
(b) $\quad 0.012 \mathrm{~g} / \mathrm{s}$ (that is, the mass no longer (a) $\quad 3.13 \times 10^{19}$ per second \quad (b) $0.012 \mathrm{~g} / \mathrm{s}$ (that is
fissionable; the actual mass loss is only $1.1 \times 10^{-5} \mathrm{~g} / \mathrm{s}$)
10.
(a) 1390 MW
(b) 4.38×10^{19} per second
(a) $\mathrm{x}-1 ; 4-4 ; \mathrm{Z}-\mathrm{He}$
(b) $x-2 ; y-2 ; Z-H$
11.
12.
(a) $\mathrm{m}=1.32 \times 10-28 \mathrm{~kg}$;
$E=1.19 \times 10^{-11} J$
(b) $4.2 \times 10^{17} / \mathrm{s}$
(a) $\mathrm{m}=3.32 \times 10^{-30} \mathrm{~kg}$;
$E=2.99 \times 10^{-13} \mathrm{~J}$
(b) $6.7 \times 10^{19} / \mathrm{s}$
13.

$E=h f($ photons)

1.

(a) $3.98 \times 10^{-19} \mathrm{~J}$
(b) $2.49 \times 10^{-19} \mathrm{~J}$
(c) $6.63 \times 10^{-19} \mathrm{~J}$
(b) $3.06 \times 10^{-16} \mathrm{~J}$
(c) $2.84 \times 10^{-19} \mathrm{~J}$
(a) $4.97 \times 10^{-19} \mathrm{~J}$
2.
3.
3.
(a) $5.00 \times 10^{-7} \mathrm{~m}$
(b) 500 nm
4. $4.34 \times 10^{14} \mathrm{~Hz}$
5. $8.0 \times 10-15 \mathrm{~J}$
6.
(a) $3.14 \times 10-19 \mathrm{~J}$
(b) $3.18 \mathrm{~W} / \mathrm{m}^{2}$
(c) 3.2×10^{15}
7. $6.3 \times 10^{19 / \mathrm{s}}$

1. becquerel; Bq
2. (a) 1000
(b) 1000000
3. $2000 \mathrm{~Bq} ; 6 \times 10^{4} \mathrm{~Bq} ; 185 \mathrm{kBq} ; 200 \mathrm{kBq} ; 75000 ; 370000 ; 1.5 \times 10^{7} ; 1.5 \times 10^{9}$; $5 \mathrm{~s} ; 45 \mathrm{~s}$
4. -
5. 32 cpm
6. gray; Gy
7. $0.2 \mathrm{~Gy} ; 5 \mu \mathrm{~Gy} ; 1.0 \mathrm{~J} ; 8.0 \mathrm{~mJ} ; 70 \mathrm{~kg} ; 80 \mathrm{~kg}$
8. $2.5 \mu \mathrm{~Gy}$
9. $20 \mu \mathrm{Gyh}-1$
10. $4.0 \mu \mathrm{~Gy} \quad$ 11. 200 hours
11. sievert; Sv
12. quality factor
13. $1000 \mu \mathrm{~Sv}$ or 1.0 mSv
14. 30 mSv
15. 10
16. 2.0 mSv
17. $5.0 \mu \mathrm{Svh}^{-1}$
18. 2.0 mSv
19. $\quad 0.57 \mu \mathrm{Svh}^{-1}$
20. $28 \mu \mathrm{Svh}^{-1}$
21. (a) 100 mGy
(b) 600 mSv
22. -
23.

(a) $150 \mu \mathrm{Gyh}^{-1}$
(b) $500 \mu \mathrm{Svh}^{-1}$
(c) 2.5 mSv
25. 4.0 mm
26.
(a) 11 mm
(b) 750 cpm
27. 15 mm

1. planets; star; year; days; satellite; month; hours; day 2. Sun
2. other side of planet 4. No
3. Moon is much closer to Earth than Sun
4. Galaxy 7. planets relatively close to Earth, stars very far away
5. C; moved position compared to stars
6. (a) Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto (Pluto occasionally closer than Neptune) (b) Mercury (c) increases
7. winter; northern hemisphere tilted away from Sun
8. northern hemisphere should be tilted towards Sun
9. same tilt to Sun all year
10.

15. (a) gravitational
(b) increases with mass
(c) decreases with distance
16. orbit would be closer to Sun
17. reflects sunlight
18. (a) E
(b) C and G
(c) -
(d) -
(e) May 14
(f) A
19. Lunar eclipse
20. (a) Moon should be directly between Earth and Sun (b) Moon's orbital plane tilted to Earth's orbital plane
21. - ; as Earth rotates once in 24 hours, a 'bulge' passes point once every 6 hours (progress of Moon round Earth makes it not exactly six hours)
22. Moon and Sun in line; extra gravitational pull of Sun

1. $\begin{array}{lll}\text { (a) } 2 \times 10^{-3} \mathrm{~m}^{3} & \text { (b) } 6 \times 10^{-5} \mathrm{~m}^{3} & \text { (c) } 3 \mathrm{~m}^{3}\end{array}$
2.

(a) 2.5 I
(b) 2000 I
(c) 0.5 I
3.
(a) $1600 \mathrm{~cm}^{3}$
(b) $3 \times 10^{6} \mathrm{~cm}^{3}$
(c) $65000 \mathrm{~cm}^{3}$ (d) $80 \mathrm{~cm}^{3}$
4.
(a) 2 m
(b) 15 m
(c) 0.9 m
(d) 70 m
5.
(a) $0.4 \mathrm{~m}^{2}$
(b) $5 \mathrm{~m}^{2}$
(c) $2 \times 10^{6} \mathrm{~m}^{2}$
(d) $0.001 \mathrm{~m}^{2}$
6.
(a) $10000 \mathrm{~cm}^{2}$
(b) $200 \mathrm{~cm}^{2}$
(c) $300 \mathrm{~cm}^{2}$
(d) $1 \mathrm{~cm}^{2}$
7.
(a) 2.5 kg
(b) 0.35 kg
(c) 1.02 kg
(d) 30 kg
8. (a) 6700 g
(b) 3.4 g
(c) 50 g
(d) 0.15 g
9. (a) 180 s
(b) 9000 s
(c) 216 s
(d) 270 s
10. $60 ; 3600 ; 86400$ s; $31,536,000$ s
11. (a) 0.5 s (b) 0.2 s
(c) 0.1 s
(d) 0.04 s
12. (a) $4 \mathrm{~cm}^{2}$
(b) $25 \mathrm{~cm}^{2}$
(c) $100 \mathrm{~cm}^{2}$
13. (a) $8 \mathrm{~cm}^{3}$
(b) $125 \mathrm{~cm}^{3}$
(c) $1000 \mathrm{~cm}^{3}$
14. (a) 0.5
(b) 20
(c) 425
(d) 300
(e) 1.5
15. (a) 8×10^{5}
(b) 8000
(c) 20
(d) 2000
16. (a) 2×10^{-5}
(b) 1.25×10^{5}
(c) 2×10^{4}
(d) 3×10^{-3}
17. (a) 2×10^{5}
(b) 10^{5}
(c) 10
(d) 5
(e) 108
(f) 0.05
18. (a) 1500
(b) 10^{6}
(c) 10^{6}
(d) 100
(e) 5×10^{12}
(f) 100
19. (a) 10%
(b) 4%
(c) 30%
(d) 35%
(e) 18% (f) 5%
20. (a) 25
(b) 210
(c) 50
(d) 300 (e) 6×10^{5}
21. (a) 0.2
(b) 0.1
(c) 0.04
(d) 50 (e) 500,000

Basic Algebra

1. (a) 2
(b) 5
(c) 0.08
(d) 9.1
(e) 12
(f) 9
(g) 20
(h) 12 (i) 4
2. (a) 2
(b) 4 (c) 5
(d) 10
(e) 4 (f) 9
(g) 144
(h) 5 (j) 10 (k) 8
(I) 27 (m) 10 (n) 8
3. (a) 2
(b) 3 (c) 1
(d) 3
(e) -5
(f) 2
(g) 3
(h) 4 (i) 4 (j) 3
(k) 3 (I) 25
4. (a) 4 (b) 8
(c) 32
(d) 64
(e) 2

8 (g) 25
(h) 125
5. (a) 20000
(b) 3000
(c) 430000
(d) 0.0023
(e) 0.00097
(f) 6730000
6. (a) $a=F / m$
(b) $m=F / a$
(c) $f=v / l$
(d) $\mathrm{I}=\mathrm{V} / \mathrm{f}$
(e) $I=Q / t$
(f) $t=Q / l$
(g) $E=V Q$
(h) $Q=E / V$ (i) $v=u+a t$ (j) $t=(v-u) / a$
$\begin{array}{llll}\text { (k) } d=v t & \text { (I) } t=d / v & \text { (m) } m=E / g h & \text { (n) } m=2 E / v 2\end{array}$ (o) $v=\sqrt{2 E} / m$
(p) $p=R T / V \quad$ (q) $V=R T / p$ (r) $T=p V / R$

Errors and Uncertainties

1.
2.

(a) 0.3%
(b) 8.3%
(b) (i) 2.22
(ii) 0.08
(c) (i) 510 (ii) 3
(e) 4.8%
(f) 1.0%
3.
(a) systematic
(b) random
(c) random
(d) systematic
(e) reading
(f) calibration
(g) systematic
(h) random
(i) systematic
(j) random
4.
(a) $\quad(3.72+/-0.05) \mathrm{cm} ; 1.3 \%$
(b) $\quad\left(8.00{ }^{+} /-0.05\right) \mathrm{cm} ; 0.63 \%$
(c) $\quad(0.90+/-0.05) \mathrm{cm} ; 5.6 \%$
(d) $\quad\left(2.40^{+} /-0.01\right) \mathrm{V} ; 0.4 \%$
(e) $\quad\left(1.8^{+} /-0.1\right) A ; 5.6 \%$
(f) $\quad\left(1.3^{+} /-0.25\right) \mathrm{cm} ; 19 \%$ [Note: large divisions suggests a large calibration error of half smallest division (0.25 here); it could be argued that smaller divisions could be 'judged by eye' at, say 0.1 but this may be too optimistic if the instrument is inherently inaccurate.]
(g) $\quad\left(8.0^{+} /-0.5\right) \mathrm{V}$; 6.3% (Note: see (f)]

